Violympic toán 7

TV

Tìm x và y biết:

a) \(2\left|2x-3\right|=\frac{1}{2}\)

b) \(7,5-3\left|5-2x\right|=-4,5\)

c) \(\left|3x-4\right|+\left|5-2x\right|=0\)

d) \(\left|x+3\right|+\left|x+1\right|=3x\)

NH
25 tháng 2 2020 lúc 8:29

a)\(2\left|2x-3\right|=\frac{1}{2}\)

\(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13}{8}\\x=\frac{11}{8}\end{matrix}\right.\)

Vậy....

b)\(7,5-3\left|5-2x\right|=-4,5\)

\(\Leftrightarrow\left|5-2x\right|=4\)

\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)

VẬy...

c)\(\left|3x-4\right|+\left|5-2x\right|=0\)

Có: \(\left|3x-4\right|\ge0với\forall x\\ \left|5-2x\right|\ge0với\forall x\)

\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5-2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow x\in\varnothing\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NS
Xem chi tiết
NS
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
DS
Xem chi tiết
HD
Xem chi tiết
LR
Xem chi tiết
NS
Xem chi tiết