Những câu hỏi liên quan
CW
Xem chi tiết
KS
20 tháng 12 2021 lúc 20:04

\(D:\dfrac{x}{2}=\dfrac{y}{9}\)

Bình luận (0)
NT
20 tháng 12 2021 lúc 20:06

Chọn D

Bình luận (0)
NV
20 tháng 12 2021 lúc 20:10

\(d.\dfrac{x}{2}=\dfrac{y}{9}\)

Bình luận (0)
H24
Xem chi tiết
NM
29 tháng 12 2021 lúc 10:49

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

Bình luận (0)
HM
Xem chi tiết
HM
10 tháng 1 2024 lúc 21:56

\(a)\dfrac{{20{\rm{x}}}}{{3{y^2}}}:\left( { - \dfrac{{15{{\rm{x}}^2}}}{{6y}}} \right) = \dfrac{{20{\rm{x}}}}{{3{y^2}}}.\left( { - \dfrac{{6y}}{{15{{\rm{x}}^2}}}} \right) = \dfrac{{20{\rm{x}}.\left( { - 6y} \right)}}{{3{y^2}.15{{\rm{x}}^2}}} = \dfrac{{ - 8}}{{3{\rm{x}}y}}\)

\(b)\dfrac{{9{{\rm{x}}^2} - {y^2}}}{{x + y}}:\dfrac{{3{\rm{x}} + y}}{{2{\rm{x}} + 2y}} = \dfrac{{\left( {3{\rm{x}} - y} \right)\left( {3{\rm{x}} + y} \right)}}{{x + y}}.\dfrac{{2{\rm{x}} + 2y}}{{3{\rm{x}} + y}} = \dfrac{{\left( {3{\rm{x}} - y} \right)\left( {3{\rm{x}} + y} \right).2.\left( {x + y} \right)}}{{(x + y).\left( {3{\rm{x}} + y} \right)}} = 2\left( {3{\rm{x}} - y} \right)\)

\(\begin{array}{l}c)\dfrac{{{x^3} + {y^3}}}{{y - x}}:\dfrac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \dfrac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{y - x}}.\dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{x^2} - xy + {y^2}}}\\ = \dfrac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right).{{\left( {x - y} \right)}^2}}}{{ - (x - y)\left( {{x^2} - xy + {y^2}} \right)}} =  \left( {x + y} \right)\left( {y - x} \right) =  {{y^2} - {x^2}} \end{array}\)

\(d)\dfrac{{9 - {x^2}}}{x}:\left( {x - 3} \right) = \dfrac{{\left( {3 - x} \right)\left( {3 + x} \right)}}{x}.\dfrac{1}{{x - 3}} = \dfrac{{ - \left( {x - 3} \right)\left( {3 + x} \right)}}{{x.\left( {x - 3} \right)}} = \dfrac{{ - \left( {3 + x} \right)}}{x}.\)

Bình luận (0)
UI
Xem chi tiết
LH
18 tháng 5 2021 lúc 22:23

b) Áp dụng bđt Svac-xơ:

\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)

=> hpt vô nghiệm

c) Ở đây x,y,z là các số thực dương

Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)

 

Bình luận (0)
TC
Xem chi tiết
NL
28 tháng 1 2021 lúc 22:10

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}+x-y+\dfrac{1}{x-y}=\dfrac{16}{3}\\\left(x+y\right)^2+\dfrac{1}{\left(x+y\right)^2}+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=\dfrac{100}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}+x-y+\dfrac{1}{x-y}=\dfrac{16}{3}\\\left(x+y+\dfrac{1}{x+y}\right)^2+\left(x-y+\dfrac{1}{x-y}\right)^2=\dfrac{136}{9}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}=u\\x-y+\dfrac{1}{x-y}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=\dfrac{16}{3}\\u^2+v^2=\dfrac{136}{9}\end{matrix}\right.\)

Hệ cơ bản, chắc bạn tự giải quyết phần còn lại được

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 6 2023 lúc 20:09

a: Áp dụng tính chất của DTSBN, ta được:

x/5=y/2=(x-y)/(5-2)=9/3=3

=>x=15; y=6

b: =>(x-3)/12=3/(x-3)

=>(x-3)^2=36

=>(x-9)(x+3)=0

=>x=9 hoặc x=-3

c; x/2=y/3

=>x/10=y/15

y/5=z/4

=>y/15=z/12

=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17

=>x=490/17; y=735/17; z=588/17

Bình luận (0)
QN
Xem chi tiết
NT
24 tháng 5 2022 lúc 12:53

a: \(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{-\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{-3}{x-3}\)

b: \(=\dfrac{x+1}{x+2}:\left(\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)^2}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x^2+2xy+y^2}{2xy}\cdot\dfrac{xy}{x^2+y^2}\)

\(=\dfrac{2\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)^2}{x^2+y^2}\cdot\dfrac{1}{2}\)

\(=\dfrac{\left(x+y\right)}{x-y}\)

Bình luận (0)
NS
Xem chi tiết
AH
16 tháng 12 2021 lúc 21:51

Lời giải:
Đặt $\frac{1}{x-y+2}=a;\frac{1}{x+y-1}=b$ thì HPT trở thành cơ bản:
\(\left\{\begin{matrix} 14a-10b=9\\ 3a+2b=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 14a-10b=9\\ 15a+10b=20\end{matrix}\right.\)

$\Rightarrow (14a-10b)+(15a+10b)=9+20$

$\Leftrightarrow 29a=29\Leftrightarrow a=1$.

$b=\frac{4-3a}{2}=\frac{1}{2}$

Vậy: \(\left\{\begin{matrix} \frac{1}{x-y+2}=1\\ \frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y+2=1\\ x+y-1=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x-y=-1\\ x+y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
NL
14 tháng 12 2020 lúc 23:55

Hàm số xác định trên R khi và chỉ khi:

a.

\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

b.

\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)

\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)

c.

\(x^2+6x+2m-3>0\) với mọi x

\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)

\(\Leftrightarrow m>6\)

e.

\(-x^2+6x+2m-3>0\) với mọi x

Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn

f.

\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)

\(\Leftrightarrow1< m< 3\)

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 4 2021 lúc 2:07

\(A=\dfrac{2x^2}{2x+2yz}+\dfrac{2y^2}{2y+2zx}+\dfrac{2z^2}{2z+2xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

\(A\ge\dfrac{2x^2}{x^2+1+y^2+z^2}+\dfrac{2y^2}{y^2+1+z^2+x^2}+\dfrac{2z^2}{z^2+1+x^2+y^2}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

\(A\ge\dfrac{2\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+1}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

Đặt \(x^2+y^2+z^2=a>0\)

\(\Rightarrow A\ge\dfrac{2a}{a+1}+\dfrac{9}{8a}=\dfrac{2a}{a+1}+\dfrac{9}{8a}-\dfrac{15}{8}+\dfrac{15}{8}\)

\(\Rightarrow A\ge\dfrac{\left(a-3\right)^2}{8a\left(a+1\right)}+\dfrac{15}{8}\ge\dfrac{15}{8}\)

\(A_{min}=\dfrac{15}{8}\) khi \(a=3\) hay \(x=y=z=1\)

Bình luận (1)