\(\dfrac{4}{15}\)+\(\dfrac{4}{35}\)+.....+\(\dfrac{4}{195}\)+\(\dfrac{4}{323}\)
A=\(\dfrac{2}{3}\)+\(\dfrac{14}{15}\)+\(\dfrac{34}{35}\)+\(\dfrac{62}{63}\)+\(\dfrac{98}{99}\)+\(\dfrac{142}{143}\)+\(\dfrac{194}{195}\)
Và B=5+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^3}\)+\(^{\dfrac{1}{4^4}}\)+\(\dfrac{1}{5^5}\)+\(\dfrac{1}{6^6}\)+\(\dfrac{1}{7^7}\).So sánh A và B
Tính giá trị biểu thức sau một cách hợp lý:
\(\dfrac{2}{35}\) + \(\dfrac{4}{77}\) + \(\dfrac{2}{143}\) + \(\dfrac{4}{221}\) + \(\dfrac{2}{323}\) + \(\dfrac{4}{437}\) +\(\dfrac{2}{575}\)
A = \(\dfrac{2}{35}\) + \(\dfrac{4}{77}\) + \(\dfrac{2}{143}\) + \(\dfrac{4}{221}\) + \(\dfrac{2}{323}\) + \(\dfrac{4}{437}\) + \(\dfrac{2}{575}\)
A = \(\dfrac{2}{5\times7}\)+\(\dfrac{4}{7\times11}\)+\(\dfrac{2}{11\times13}\)+\(\dfrac{4}{13\times17}\)+\(\dfrac{2}{17\times19}\)+\(\dfrac{4}{19\times23}\)+\(\dfrac{2}{23\times25}\)
A = \(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{13}\)+\(\dfrac{1}{13}\)-\(\dfrac{1}{17}\)+\(\dfrac{1}{17}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{23}\)+\(\dfrac{1}{23}\)-\(\dfrac{1}{25}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{25}\)
A = \(\dfrac{4}{25}\)
1, So sánh A và B, biết :
A=\(\dfrac{2^{19}.27^3.15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
B=\(\dfrac{4}{35}+\dfrac{4}{63}+\dfrac{4}{99}+\dfrac{4}{143}+\dfrac{4}{195}\)
=> A=218.339 B=\(\dfrac{4}{15}\)
vì A>1>B
=> B<A
Tìm x :
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
Giải:
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{19.21}=\dfrac{x}{49}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\dfrac{2}{7}=\dfrac{x}{49}\)
\(\dfrac{4}{7}=\dfrac{x}{49}\)
\(\Rightarrow x=\dfrac{4.49}{7}=28\)
Chúc bạn học tốt!
\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{19.21}=\dfrac{x}{49}\)
2 . ( \(\dfrac{1}{3}-\dfrac{1}{21}\) ) = \(\dfrac{x}{49}\)
2 . \(\dfrac{2}{7}\) = \(\dfrac{x}{49}\)
=> \(\dfrac{4}{7}=\dfrac{x}{49}\)
=> \(\dfrac{21}{49}=\dfrac{x}{49}\)
=> \(x=21\)
Vậy \(x=21\)
Tìm x :
\(\dfrac{4}{15}\) + \(\dfrac{4}{35}\) + \(\dfrac{4}{63}\) + ... + \(\dfrac{4}{399}\) = \(\dfrac{x}{49}\)
Ta có : \(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\Leftrightarrow2\cdot\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{2}{7}=\dfrac{x}{98}\Rightarrow x=28\)
Vậy $x=28$
1, So sánh A và B biết A=\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\) B=\(\dfrac{4}{35}+\dfrac{4}{63}+\dfrac{4}{99}+\dfrac{4}{143}+\dfrac{4}{195}\) ( GIÚP Mk Với Mk Đang Cần Gấp )
may mà m đăng để t đỡ phải viết (mỏi tay) Nguyen Ngoc Linh
\(A=\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+2^{12}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^{19}+2^{12}}=\dfrac{2^{10}+5.2^8}{3^{10}+2^3}=\dfrac{2^7+5.2^5}{3^{10}}\)
\(B=\dfrac{4}{35}+\dfrac{4}{63}+\dfrac{4}{99}+\dfrac{4}{143}+\dfrac{4}{195}\)
\(=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\right)\)
\(=2.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{15}\right)=2\left(\dfrac{2}{15}\right)\)=\(\dfrac{4}{15}\)
\(\sqrt[3]{\dfrac{150_6.600_2}{\dfrac{5}{4}.6.\dfrac{15}{\dfrac{4}{9}.5+\dfrac{68}{97:\dfrac{5}{8}+\dfrac{58}{15-\dfrac{\dfrac{\dfrac{35^{35}}{17^{17}}}{156^{156}}.68}{\dfrac{23^{23}}{14}}}}}}}\)
a.\(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b.\(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
c.\(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
d.\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
e.\(\dfrac{x+97}{125}+\dfrac{x-63}{35}=\dfrac{x-7}{21}+\dfrac{x-77}{49}\)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
\(A.\dfrac{-15}{28}x\dfrac{7}{25}\\ B.\dfrac{-5}{14}x\dfrac{7}{-3}\\ C.\dfrac{-1}{5}-\dfrac{7}{15}x\dfrac{9}{35}\\ D.\dfrac{-3}{4}-(\dfrac{-1}{2})^2\\ E.\dfrac{-4}{5}-\dfrac{-4}{5}x\dfrac{15}{16}\\F.(\dfrac{3}{4}+\dfrac{-7}{2})x(\dfrac{2}{11}+\dfrac{12}{22})\)
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)