Những câu hỏi liên quan
PB
Xem chi tiết
CT
6 tháng 7 2017 lúc 15:44

Bình luận (0)
H24
Xem chi tiết
NL
5 tháng 3 2022 lúc 17:14

1.

\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)

Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)

\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)

\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)

\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)

Bình luận (0)
NL
5 tháng 3 2022 lúc 17:15

2.

\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)

\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)

\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2018 lúc 1:56

Đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 10 2017 lúc 4:54

π 4 + ln 1 + π 4 - 1 2 ln 2

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 12 2017 lúc 8:04

F x = e x + sin x + C

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 3 2018 lúc 11:49

Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2017 lúc 15:11

Chọn B

I = ∫ cos x d x cos 3 x ( tan x + 2 ) 3 = ∫ d x cos 2 x ( tan x + 2 ) 3

Đặt t = tan x ⇒ d t = 1 cos 2 x d x

Do đó  J = - 1 2 1 ( tan x + 2 ) 2 + C

Bình luận (0)
AH
Xem chi tiết
NL
18 tháng 5 2021 lúc 18:16

Đặt \(I=\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0f\left(2sinx+1\right)d\left(2sinx+1\right)\)

Đặt \(2sinx+1=t\Rightarrow I=\dfrac{1}{2}\int\limits^3_1f\left(t\right)sint=\dfrac{1}{2}\int\limits^2_1f\left(t\right)dt+\dfrac{1}{2}\int\limits^3_2f\left(t\right)dt\)

\(=\dfrac{1}{2}\int\limits^2_1\left(t^2-2t+3\right)dt+\dfrac{1}{2}\int\limits^3_2\left(t^2-1\right)dt=\dfrac{23}{6}\)

Bình luận (0)
QT
Xem chi tiết
NL
20 tháng 12 2020 lúc 23:58

a.

\(f'\left(x\right)=\dfrac{10}{\left(x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow\min\limits_{\left[-2;5\right]}f\left(x\right)=f\left(-2\right)=-7\)

\(\max\limits_{\left[-2;5\right]}f\left(x\right)=f\left(5\right)=\dfrac{7}{4}\)

b.

Đặt \(\left\{{}\begin{matrix}u=2x-3\\dv=cosxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=sinx\end{matrix}\right.\)

\(\Rightarrow I=\left(2x-3\right)sinx|^{\pi}_0-2\int\limits^{\pi}_0sinxdx=-2\int\limits^{\pi}_0sinxdx=-4\)

Bình luận (0)