Đề 7

KV
Xem chi tiết
H24
Xem chi tiết
H24
28 tháng 4 2022 lúc 22:36

=_=

Bình luận (0)
H24
28 tháng 4 2022 lúc 22:36

?

Bình luận (0)
BS
28 tháng 4 2022 lúc 22:37

Ủa jz???

Bình luận (0)
NS
Xem chi tiết
TA
27 tháng 2 2022 lúc 16:17

1

Bình luận (0)
PT
27 tháng 2 2022 lúc 16:18

1

Bình luận (0)
NH
27 tháng 2 2022 lúc 16:18

1

Bình luận (0)
NS
Xem chi tiết
LN
27 tháng 2 2022 lúc 9:46

1 là 8
2 là 0
:v

Bình luận (0)
NL
NT
17 tháng 12 2021 lúc 14:29

b: B

Bình luận (1)
TM
19 tháng 12 2021 lúc 17:16

A) chín mươi sáu triệu không trăm linh ba nghìn năm trăm linh bảy

b) CHỌN A

C) 350:35+210:35

     =  10+6

     = 16

Bình luận (1)
Xem chi tiết
XL
Xem chi tiết
NL
5 tháng 5 2021 lúc 17:13

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

Bình luận (1)
TB
Xem chi tiết
HH
2 tháng 4 2021 lúc 21:51

\(f\left(0\right)=-1\Rightarrow f'\left(0\right)+2=0\Leftrightarrow f'\left(0\right)=-2\)

\(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\dfrac{f'\left(x\right)-x.e^{3x}}{2}dx=\dfrac{1}{2}\int\limits^1_0f'\left(x\right)dx-\dfrac{1}{2}\int\limits^1_0x.e^{3x}dx=\dfrac{1}{2}f\left(x\right)|^1_0-\dfrac{1}{2}\int\limits^1_0xe^{3x}dx\)

\(I_1=\int xe^{3x}dx\)

\(\left\{{}\begin{matrix}u=x\\dv=e^{3x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I_1=\dfrac{1}{3}xe^{3x}-\dfrac{1}{3}\int e^{3x}dx=\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\)

\(\Rightarrow I=\dfrac{1}{2}f\left(1\right)-\dfrac{1}{2}f\left(0\right)-\dfrac{1}{2}\left(\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\right)|^1_0\)

Èo, tắc chỗ f(1) rồi, vậy đành phải biến đổi để tìm f(x) luôn vậy, hmm

Thử nhân 2 vế với \(e^{2x}\) xem nào:

\(e^{2x}f'\left(x\right)-2e^{2x}f\left(x\right)=x.e^{5x}\Leftrightarrow\left(e^{2x}.f\left(x\right)\right)'=x.e^{5x}\)

Lay nguyen ham 2 ve:

\(e^{2x}.f\left(x\right)=\int x.e^{5x}dx\)

\(\left\{{}\begin{matrix}x=u\\dv=e^{5x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}dx=du\\v=\dfrac{1}{5}e^{5x}\end{matrix}\right.\)

\(\Rightarrow e^{2x}.f\left(x\right)=\int x.e^{5x}dx=\dfrac{1}{5}x.e^{5x}-\dfrac{1}{5}\int e^{5x}dx=\dfrac{1}{5}xe^{5x}-\dfrac{1}{25}e^{5x}+C\)

\(f\left(0\right)=-1\Leftrightarrow f\left(0\right)=-\dfrac{1}{25}+C=-1\Leftrightarrow C=-\dfrac{24}{25}\)

\(\Rightarrow f\left(x\right)=\dfrac{\dfrac{1}{5}xe^{5x}-\dfrac{1}{25}e^{5x}-\dfrac{24}{25}}{e^{2x}}\)

Vậy là xong rồi \(\Rightarrow f\left(1\right)=...\) , thay vô \(I=\dfrac{1}{2}f\left(1\right)-\dfrac{1}{2}.\left(-1\right)-\dfrac{1}{2}\left(\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\right)|^1_0\) là được nha :)

Bình luận (0)
NL
2 tháng 4 2021 lúc 23:41

Nguyên tắc:

\(g\left(x\right).f'\left(x\right)+h\left(x\right).f\left(x\right)=p\left(x\right)\)

Đầu tiên luôn biến đổi để \(f'\left(x\right)\) đứng riêng biệt 1 mình:

\(\Rightarrow f'\left(x\right)+\dfrac{h\left(x\right)}{g\left(x\right)}.f\left(x\right)=\dfrac{p\left(x\right)}{g\left(x\right)}\) (1)

Cần thêm/bớt, nhân/chia sao cho biến về dạng:

\(\left[u\left(x\right).f\left(x\right)\right]'=q\left(x\right)\)

\(\Leftrightarrow f'\left(x\right).u\left(x\right)+u'\left(x\right).f\left(x\right)=q\left(x\right)\)

\(\Leftrightarrow f'\left(x\right)+\dfrac{u'\left(x\right)}{u\left(x\right)}.f\left(x\right)=\dfrac{q\left(x\right)}{u\left(x\right)}\)

Chỉ quan tâm vế trái, khi đó ta sẽ thấy hàm đằng trước \(f\left(x\right)\) chính là \(\dfrac{u'\left(x\right)}{u\left(x\right)}\) 

Đồng nhất \(\Rightarrow\dfrac{u'\left(x\right)}{u\left(x\right)}=-2\)

Lấy nguyên hàm 2 vế \(\Rightarrow ln\left|u\left(x\right)\right|=-2x\Rightarrow u\left(x\right)=e^{-2x}\)

Do đó, ở bài toán ban đầu ta cần nhân 2 vế của (1) với \(u\left(x\right)=e^{-2x}\) nghĩa là:

\(f'\left(x\right)-2f\left(x\right)=x.e^{3x}\Leftrightarrow e^{-2x}.f'\left(x\right)-2e^{-2x}.f\left(x\right)=x.e^x\)

\(\Leftrightarrow\left[e^{-2x}.f\left(x\right)\right]'=x.e^x\)

Nguyên hàm 2 vế: \(\Rightarrow e^{-2x}.f\left(x\right)=\left(x-1\right)e^x+C\)

Thay \(x=0\Rightarrow1.f\left(0\right)=-1+C\Rightarrow C=0\)

\(\Rightarrow e^{-2x}.f\left(x\right)=\left(x-1\right)e^x\Rightarrow f\left(x\right)=\left(x-1\right)e^{3x}\)

\(\Rightarrow I=\int\limits^1_0\left(x-1\right)e^{3x}dx=...\)

Bình luận (0)
NT
Xem chi tiết
HD
15 tháng 5 2018 lúc 18:04

a- xét tam giác vuông ABH và DHB có;

BD=HA

HB là cạnh chung

Vậy TGiác ABH=DHB

=> Góc BDH=HAB

b- Ta có;

góc HAB =AHB-HBA

=90-50

=40

=> Góc BDH=HAB=40 độ

c- Vì tam giác ABH=DHB

=>Góc DHB=ABH

=> HD // AB

Gọi giao điểm của DH với AC là K

=>DK // AB

Mà CA vuông góc với AB

=> KD vuông góc với CA (định lí hai đường thẳng song song)

Hay DH vuông góc với CA

Bình luận (0)
LT
Xem chi tiết
HK
26 tháng 4 2017 lúc 16:56

đây là toán 12 sao

Bình luận (0)
CN
14 tháng 1 2018 lúc 11:53

Đề 7

Bình luận (2)
CN
14 tháng 1 2018 lúc 11:53

Quá Dễ.........................banh

Bình luận (0)