Rút gọn biểu thức
A=\(\sqrt{x+2\sqrt{2x-4}+\sqrt{x-2\sqrt{2x-4}}}\)( với x >=2)
1) Rút gọn biểu thức
A=\(\left(\dfrac{x\sqrt{x}+x-2}{x-1}-\dfrac{\sqrt{x}+2}{x+3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{2x+\sqrt{x}-3}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
\(A=\left[\frac{(\sqrt{x}-1)(x+2\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}+2)}\right].\frac{\sqrt{x}-1}{(\sqrt{x}-1)(2\sqrt{x}+3)}\)
\(=\left(\frac{x+2\sqrt{x}+2}{\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}+3}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1}{2\sqrt{x}+3}=\frac{(\sqrt{x}+1)^2}{(\sqrt{x}+1)(2\sqrt{x}+3)}=\frac{\sqrt{x}+1}{2\sqrt{x}+3}\)
Rút gọn biểu thức : A=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
ĐKXĐ: \(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
Rút gọn biểu thức
a) A=\(2\sqrt{\left(2-\sqrt{5}\right)^2}-\dfrac{8}{3-\sqrt{5}}\)
b) B= \(\left(\dfrac{2\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\left(1+\dfrac{2}{\sqrt{x}-2}\right)\) Với x>0, x khác 4
\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)
\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)
\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)
\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) với \(x\ge0;x\ne4;x\ne36\)
Rút gọn biểu thức A
Sửa đề: x-4
\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)
Rút gọn biểu thức sau với x \(\ge\) 0
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)
\(=-\sqrt{2x}-2\sqrt{x}+8\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)
\(=\left(3+9-6\right)\sqrt{2x}+18\)
\(=6\sqrt{2x}+18\)
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) và B = \(\dfrac{2}{\sqrt{x}-6}\) với \(x\ge0;x\ne4;x\ne36\)
a) Rút gọn các biểu thức A
b) Tìm GTNN của biểu thức P = A : B
Bạn xem lại xem đã biết biểu thức đúng chưa vậy?
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
hần II. TỰ LUẬN âu 1: Rút gọn biểu thức 3 = ((sqrt(x) + 1)/(sqrt(x) - 1) - (sqrt(x) - 1)/(sqrt(x) + 1)) / ((sqrt(x))/(x + sqrt(x)) - (sqrt(x))/(1 - sqrt(x)) + 1/(x - 1)) (Với x > 0 ,x ne1) . 1 1 + 4√x √x+1 (với x> 0; x= 4). √x-2 √x+2x-4 ầu 2: Rút gọn biểu thức B= âu 3: Rút gon biểu thức 4= (10sqrt(x))/(x + 3sqrt(x) - 4) - (2sqrt(x) - 3)/(sqrt(x) + 4) + sqrt x +1 1- sqrt x (voi x>=0;x ne1) ầu 4: Rút gọn biểu thức: P = ((4x)/(4 - x) + (2 + sqrt(x))/(2 - sqrt(x)) - (2 - sqrt(x))/(2 + sqrt(x))) / ((sqrt(x) + 3)/(2 - sqrt(x))) * voix >=0 v hat a x ne4. P= (1/(x - sqrt(x)) + 1/(sqrt(x) - 1)) / ((sqrt(x) + 1)/((sqrt(x) - 1) ^ 2)) ( nabla hat partial i x>0,x ne1) âu 5: Rút gọn biểu thức ầu 6: Rút gọn biểu thức: Q= (1/(sqrt(x) - 1) + 1/(x - sqrt(x))) / (1/(sqrt(x) + 1) * 2/(1 - x)) ( với x>0;x=1) âu 7: Tìm các giá trị của tham số k đề hàm số y = (2k - 1) * x + 3 - k đồng biến trên R âu 8: Tìm m để đường thẳng y= (2 - m) * x +3(m ne2) có hệ số góc bằng 3. 0. Tìm các giá trị của tham số k để đồ thị của hàm số y = (k - 1) * x + k đi qua điềm x-4
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc đề dễ hiểu hơn bạn nhé.
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
✱ giải pt:
a.\(\sqrt{x^2-4x+4}\)\(=5\)
⇔\(\sqrt{\left(x-2\right)^2}=5\)
⇒\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy....
b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
⇔ \(4\sqrt{x+1}=16\)
⇔ \(\sqrt{x+1}=16\)
⇒ \(x+1=256\)
⇔ \(x=255\)
vậy.....