cho x = y
x2 + y2 = a2 + b2
cm x2001 + y2001 = a2001 + b2001
a, Phân tích thành nhân tử (x+y+z)3-x3-y3-z3
b, Cho các số x, y, z thỏa mãn với điều kiện : x+y+z=1 và x3+y3+z3=1
c, Tính giá trị của biểu thức : A= x2001+ y2001+ z2001
a: (x+y+z)^3-x^3-y^3-z^3
=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)
=(x+y)(y+z)(x+z)
b: x^3+y^3+z^3=1
x+y+z=1
=>x+y=1-z
x^3+y^3+z^3=1
=>(x+y)^3+z^3-3xy(x+y)=1
=>(1-z)^3+z^3-3xy(1-z)=1
=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1
=>1-3z+3z^2-3xy(1-z)=1
=>-3z+3z^2-3xy(1-z)=0
=>-3z(1-z)-3xy(1-z)=0
=>(z-1)(z+xy)=0
=>z=1 và xy=0
=>z=1 và x=0; y=0
A=1+0+0=1
B1: Cmr: nếu a1/a2=a2/a3=a3/a4=...=a2000/a2001 thì a1/a2001=(a1+a2+a3+...+a2000/a2+a3+a4+...+a2001)
C h o x + y = a + b ; x 2 + y 2 = a 2 + b 2 . V ớ i n ∈ N * , c h ọ n c â u đ ú n g .
A . x n + y n = a n - b n
B . x n + y n = 2 a n + b n
C . x n + y n = a n + b n
D . x n + y n = a n + b n 2
T a c ó : x 2 + y 2 = a 2 + b 2 ⇔ x 2 - a 2 = b 2 - y 2 ⇔ x - a x + a = b - y b + y M à x + y = a + b ⇔ x - a = b - y n ê n t a c ó x - a x + a = x - a b + y ⇔ x - a x + a - x - a b + y = 0 ⇔ x - a x + a - b - y = 0 ⇔ x - a = 0 x + a - b - y = 0 ⇔ x = a x - y = b - a
+) Với x = a thay vào x + y = a + b ta có: a + y = a + b
Suy ra y = b
Do đó: x n + y n = a n + b n
+) Với x - y = b - a suy ra x = b - a + y thay vào x + y = a + b ta có:
b - a + y + y = a + b
2y = 2a
y = a
Suy ra x - a = b - a hay x = b
Do đó: x n + y n = b n + a n = a n + b n
Vậy x n + y n = a n + b n
Đáp án cần chọn là C
Cho a,b,x,y∈R thoả mãn a2+b2=x2+y2=1.
Chứng minh rằng:
\(-\sqrt{2}\) ≤ a(x+y)+b(x-y) ≤\(\sqrt{2}\)
Bài 8 : Chứng minh các đẳng thức sau
a. ( a2 - 1 )2 + 4a2 = ( a2 + 1 )2
b. ( x - y ) + ( x + y ) 2 + 2(x2 - y2 ) = 4x2
\(a,VT=\left(a^2-1\right)^2+4a^2\\ =a^4-2a^2+1+4a^2\\ =a^4+2a^2+1\\ =\left(a^2+1\right)^2 =VP\\ b,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =x^2-2xy+y^2+x^2+y^2+2xy+2x^2-2y^2\\ =4x^2=VP\)
Cho x1+x2+x3+x4+x5+x6+x7+................+x2001+x2002 và x1+x2+x3=x4+x5+x6=.........=x1999+x2000+x2001=0. Tìm x2002.
Cho x+y = a+b và x2+y2 = a2+ b2. Chứng minh x3+y3=a3+b3
Ta có x + y = a + b
=> (x + y)2 = (a + b)2
=> x2 + y2 + 2xy = a2 + b2 + 2ab
=> xy = ab
Lại có x + y = a + b
=> (x + y)3 = (a + b)3
=> x3 + 3x2y + 3xy2 + y3 = a3 + 3a2b + 3ab2 + b3
=> x3 + y3 + 3xy(x + y) = a3 + b3 + 3ab(a + b)
=> x3 + y3 = a3 + b3 (vì x + y = a + b ; xy = ab)
Cho a + b + c = a2 + b2 + c2 = 1 và x : y : z = a : b : c.
Chứng minh rằng: (x + y + z)2 = x2 + y2 + z2.
Cho a/x+b/y+C/z=2 và x/a+y/b+z/c=0 . Chứng minh A=x2/a2+y2/b2+z2/c2=1
a)a2 – 4b2 b) x2 – y2 + 6y - 9
c) (2a + b)2 – a2 d) 16(x – 1)2 – 25(x + y)2
e)x2 + 10x + 25 f) 25x2 – 20xy + 4y2
g)9x4 + 24x2 + 16 h) x3 – 125
i)x6 – 1 k) x3 + 15x2 + 75x + 125
a) (a - 2b)x(a + 2b)
b) x2-(y-3)2
=> (x-y+3)(x+y-3)
c) (2a + b - a)(2a + b + a)
=> (a+b)(3a+b)
d) (4(x - 1))2 - (5(x + y))2
⇔ (4x - 4 - 5x - 5y)(4x - 4 + 5x + 5y)
⇔ -(x + 5y + 4)(9x + 5y + -4)
e) (x + 5)2
f) (5x - 2y)2
h) (x - 5)(x2 + 5x + 25)
k) (x + 5)3