C h o x + y = a + b ; x 2 + y 2 = a 2 + b 2 . V ớ i n ∈ N * , c h ọ n c â u đ ú n g .
A . x n + y n = a n - b n
B . x n + y n = 2 a n + b n
C . x n + y n = a n + b n
D . x n + y n = a n + b n 2
Cho x+y = a+b và x2+y2 = a2+ b2. Chứng minh x3+y3=a3+b3
a)a2 – 4b2 b) x2 – y2 + 6y - 9
c) (2a + b)2 – a2 d) 16(x – 1)2 – 25(x + y)2
e)x2 + 10x + 25 f) 25x2 – 20xy + 4y2
g)9x4 + 24x2 + 16 h) x3 – 125
i)x6 – 1 k) x3 + 15x2 + 75x + 125
Phân tích đa thức thành ntu
a) 1+ 2xy -x2- y2
b) a2(y-z) + y2( z-x) + z2 ( x- y)
c) x4 - 64
d) x2 - 15x + 36
e) (x2 - 8)2 - 784
Phân tích các đa thức sau thành nhân tử:
a) 2xy + 3z + 6y + xz; b) a 4 - 9 a 3 + a 2 - 9a;
c) 3 x 2 + 5y - 3xy + (-5x); d) x 2 - (a + b)x + ab;
e) 4 x 2 - 4xy + y 2 - 9 t 2 ; g) x 3 – 3 x 2 y + 3x y 2 – y 3 – z 3
h) x2 - y2 + 8x + 6y + 7.
BT:
Câu 1)x2+x+y2-y-2xy
Câu 2)3a+3b-a2-ab
Câu 3)-x2+7x-6
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
Phân tích đa thức thành nhân tử:
a) x(x+y)-5x-5y
b) 3x-5y-6ax+10ay
c) a2-6a-b2+6b
d) 100a2-20a-2b-b2
e) 36x2-12x+1-b2
f) x2-z2+y2-2xy
phân tích đa thức sau thành nhân tử
a) x2-4y2-x-+2y
b) x2-y2-4y-4
c) 9x2-y2-2yz-z2
d) a3x-ab+b-x
e) 36-a2+2ab-b2
g) a3+3a3+3a3+1-b3