Cho phân số
A=\(\frac{x-2}{x+3}\)
Tìm x để A thuộc Z
Giải chi tiết
giải chi tiết với ak
cho pt ẩn x: \(x^2-2\left(m-3\right)x+m^2+3=0\) với m là tham số
a) tìm giá trị của m để pt có 2 nghiệm
b) gọi \(x_1,x_2\) là 2 nghiệm của pt. tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(\left(x_1-x_2\right)^2-5x_1x_2=4\)
a) ∆' = [-(m - 3)]² - (m² + 3)
= m² - 6m + 9 - m² - 3
= -6m + 6
Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0
⇔ -6m + 6 ≥ 0
⇔ 6m ≤ 6
⇔ m ≤ 1
Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm
b) Theo định lý Viét, ta có:
x₁ + x₂ = 2(m - 3) = 2m - 6
x₁x₂ = m² + 3
Ta có:
(x₁ - x₂)² - 5x₁x₂ = 4
⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4
⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4
⇔ (x₁ + x₂)² - 9x₁x₂ = 4
⇔ (2m - 6)² - 9(m² + 3) = 4
⇔ 4m² - 24m + 36 - 9m² - 27 = 4
⇔ -5m² - 24m + 9 = 4
⇔ 5m² + 24m - 5 = 0
⇔ 5m² + 25m - m - 5 = 0
⇔ (5m² + 25m) - (m + 5) = 0
⇔ 5m(m + 5) - (m + 5) = 0
⇔ (m + 5)(5m - 1) = 0
⇔ m + 5 = 0 hoặc 5m - 1 = 0
*) m + 5 = 0
⇔ m = -5 (nhận)
*) 5m - 1 = 0
⇔ m = 1/5 (nhận)
Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu
a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)
\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)
\(=4m^2-24m+36-4m^2-12=-24m+24\)
Để phương trình có hai nghiệm thì \(\Delta>=0\)
=>-24m+24>=0
=>-24m>=-24
=>m<=1
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-5x_1x_2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)
=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)
=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)
=>\(4m^2-24m+36-9m^2-27-4=0\)
=>\(-5m^2-24m+5=0\)
=>\(-5m^2-25m+m+5=0\)
=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)
=>(m+5)(-5m+1)=0
=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
cho a=12+15+21+x(x thuộc N)
a,tìm x để a chia hết cho 3
b, tìm x để a không chia hết cho 3
giải chi tiết giúp mình nhé , ai giải nhanh mình sẽ tick
Cho biểu thức f(x)=x2 -(2m+3)x+m2 -1 (m là tham số)
a) Tìm giá trị của m để phương trình f(x)=0 có 2 nghiệm dương phân biệt
b) Tìm giá trị của x để giá trị nhỏ nhất của f(x) là \(\frac{2017}{4}\)
Giải chi tiết hộ mình với
a/ Giá trị của biểu thức \(\frac{3}{4}+\frac{5}{-12}\) bằng phân số nào? Vì sao?
b/Giá trị của biểu thức \(\frac{3}{4}:\frac{6}{-8}\)bằng phân số nào? Vì sao?
c/ Tìm điểu kiện x để phân số \(\frac{3}{x-1}\)có nghĩa. Giải chi tiết
d/ \(\frac{x}{-9}=\left(\frac{2}{6}\right)^2\)Tìm x. Giải thích vì sao
e/ Nếu \(\frac{a}{b}+\frac{3}{6}=0\)thì bằng cái gì? Giải thích
Ai giải xog chi tiết và đúng mk sẽ tick! :)
d) \(\frac{x}{-9}=\left(\frac{2}{6}\right)^2\)
\(\Rightarrow\frac{x}{-9}=\frac{2}{6}.\frac{2}{6}\)
\(\Rightarrow\frac{x}{-9}=\frac{4}{36}\)
\(\Rightarrow\frac{x}{-9}=\frac{1}{9}\)
\(\Rightarrow\frac{-x}{9}=\frac{1}{9}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=1\)
e) \(\frac{a}{b}+\frac{3}{6}=0\)
\(\Rightarrow\frac{a}{b}=0-\frac{3}{6}\)
\(\Rightarrow\frac{a}{b}=0-\frac{1}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{-1}{2}\)
\(\Rightarrow a=-1;b=2\)
Tìm x thuộc z để các biểu thức sau nhận giá trị nguyên:
a) \(A=\frac{x+5}{x+2}\)
b)\(B=\frac{x+1}{x+2}\)
c)\(C=\frac{2x-1}{x+1}\)
giải chi tiết hộ e với ạ
e cảm ơn nhiều <3
Trả lời:
a, \(A=\frac{x+5}{x+2}=\frac{x+2+3}{x+2}=\frac{x+2}{x+2}+\frac{3}{x+2}=1+\frac{3}{x+2}\)
Để \(A\inℤ\) thì \(\frac{3}{x+2}\inℤ\)
\(\Rightarrow3⋮x+2\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Vậy \(x\in\left\{-1;-3;1;-5\right\}\)
b, \(B=\frac{x+1}{x+2}=\frac{x+2-1}{x+2}=\frac{x+2}{x+2}-\frac{1}{x+2}=1-\frac{1}{x+2}\)
Để A là số nguyên thì \(1⋮x+2\Rightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau:
x+2 | 1 | -1 |
x | -1 | -3 |
Vậy \(x\in\left\{-1;-3\right\}\)
c, \(C=\frac{2x-1}{x+1}=\frac{2\left(x+1\right)-3}{x+1}=\frac{2\left(x+1\right)}{x+1}-\frac{3}{x+1}=2-\frac{3}{x+1}\)
Để C là số nguyên thì \(3⋮x+1\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
Vậy \(x\in\left\{0;-2;2;-4\right\}\)
Tìm x thuộc Z để A có giá trị nguyên A=\(\frac{5\cdot x-2}{x-2}\)
P/s: #Bn nào bít thì giải nhanh dùm với, ko cần phải chi tiết quá đâu ạ!!!!!!!!!
Cho phân số A=\(\frac{x-2}{x+3}\)
Tìm x để A thuộc Z
\(A=\frac{x-2}{x+3}\in Z\)
=> (x- 2) \(⋮\)(x+ 3)
=> (x- 2)-( x+3) \(⋮\)(x +3)
=> -5 \(⋮\)(x+ 3)
Ta có bảng sau:
x+3 | -1 | -5 | 1 | 5 |
x | -4 | -8 | -2 | 2 |
Để A thuộc Z thì x= { -4;-8; -2; 2}
Tìm x thuộc Z để biểu thức nhân giá trị nguyên: \(\dfrac{5\sqrt{x}-6}{2\sqrt{x}-3}\)
Giải chi tiết được ko ạ?
Để biểu thức đề bài cho có giá trị nguyên thì \(5\sqrt{x}-6⋮2\sqrt{x}-3\)
\(\Leftrightarrow10\sqrt{x}-12⋮2\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}-3\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;6\right\}\)
hay \(x\in\left\{0;1;4;9\right\}\)
Cho phân số
A=\(\frac{x-2}{x+3}\)
Tìm x để A thuộc Z
\(A=\frac{x-2}{x+3}=\frac{\left(x+3\right)-5}{x+3}=1-\frac{5}{x+3}\)
Vậy để A nguyên thì \(x+3\inƯ\left(5\right)\)
Mà: Ư(5)={-1;1;5;-5}
=> x+3={1;-1;5;-5}
Ta có bảng sau
x+3 | 1 | -1 | 5 | -5 |
x | -2 | -4 | 2 | -8 |
Vậy x={-8;-4;-2;2} thì A nguyên