Những câu hỏi liên quan
VH
Xem chi tiết
NH
Xem chi tiết
AH
4 tháng 9 2021 lúc 18:51

Lời giải:

a.

$=(x^2)^2+(\frac{1}{2}y^4)^2+2.x^2.\frac{1}{2}y^4-x^2y^4$

$=(x^2+\frac{1}{2}y^4)^2-(xy^2)^2$
$=(x^2+\frac{1}{2}y^4-xy^2)(x^2+\frac{1}{2}y^4+xy^2)$
b.

$=(\frac{1}{2}x^2)^2+(y^4)^2+2.\frac{1}{2}x^2.y^4-x^2y^4$
$=(\frac{1}{2}x^2+y^4)^2-(xy^2)^2$
$=(\frac{1}{2}x^2+y^4-xy^2)(\frac{1}{2}x^2+y^4+xy^2)$

c.

$=(8x^2)^2+(y^2)^2+2.8x^2.y^2-16x^2y^2$

$=(8x^2+y^2)^2-(4xy)^2=(8x^2+y^2-4xy)(8x^2+y^2+4xy)$

d.

$=\frac{64x^4+y^4}{64}=\frac{1}{64}(8x^2+y^2-4xy)(8x^2+y^2+4xy)$

Bình luận (0)
NT
4 tháng 9 2021 lúc 22:57

c: \(64x^4+y^4\)

\(=64x^4+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

 

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 12 2019 lúc 16:13

Chọn A

Bình luận (0)
BK
Xem chi tiết
HN
Xem chi tiết
AH
26 tháng 8 2021 lúc 12:15

Bạn cần viết đầy đủ đề: Bao gồm yêu cầu đề và công thức toán để được hỗ trợ tốt hơn.

Bình luận (0)
NT
26 tháng 8 2021 lúc 13:56

\(D=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)

\(=\left[\left(x^2+1\right)^2-x^2\right]\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\cdot\left(x^8-x^4+1\right)\)

\(=\left(x^8+2x^4+1-x^4\right)\left(x^8-x^4+1\right)\)

\(=\left(x^8+1\right)^2-x^8\)

\(=x^{16}+x^8+1\)

Bình luận (0)
PA
Xem chi tiết
NM
10 tháng 9 2021 lúc 10:15

\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)

Bình luận (0)
NT
Xem chi tiết
HQ
13 tháng 7 2019 lúc 10:57

Giải phương trình??? sử dụng Hooc-ne cho nhanh nhá :v

1) \(x^4-8x^2+4x+3=0\)

( dùng máy tính ta đoán được 1 nghiệm chính xác là -3 )

3 1 0 -8 4 3 1 -3 1 1 0

\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3-3x^2+x+1=0\left(2\right)\end{matrix}\right.\)

Tiếp tục dùng máy tính ta tìm được 1 nghiệm chính xác của pt ( 2 ) là 1

1 1 -3 1 1 1 -2 -1 0

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)

rồi mấy câu còn lại tương tự

Bình luận (0)
H24
Xem chi tiết
SN
23 tháng 12 2015 lúc 11:16

x1;x2;x3;x4;x5=-1 hoặc 1

=>x1.x2;x2.x3;x3.x4;x4.x5;x5.x1 bằng 1 hoặc -1

giả sử x1.x2+x2.x3+x3.x4+x4.x5+x5.x1=0

=>số các số hạng 1 và -1 bằng nhau

=>số các số hạng chia hết cho 2

=>5 chia hết cho 2(có 5 số hạng) Vô lí

=>x1.x2+x2.x3+x3.x4+x4.x5+x5.x1\(\ne0\)

=>đpcm

Bình luận (0)
XL
23 tháng 12 2015 lúc 11:14

chtt

ai làm ơn tích mình ,mình tích lại cho

Bình luận (0)
HG
23 tháng 12 2015 lúc 11:18

x1x2+x2x3+x3x4+x4x5+x5x1=[(x2)*2]+[(x2)*6]+[(x2)*12]+[(x2)*20]+[(x2)*5]=(x2)*(2+6+12+20+5)

Mà x2 là số dương và 2+6+12+20+5 cũng là số dương nên x1x2+x2x3+x3x4+x4x5+x5x1 khác 0

tick nha

Bình luận (0)
ND
Xem chi tiết
NL
6 tháng 7 2021 lúc 15:21

a.

\(x^4+x^3+1=\left(\dfrac{x^4}{4}+x^3+x^2\right)+\left(\dfrac{3x^4}{4}-x^2+\dfrac{1}{3}\right)+\dfrac{2}{3}\)

\(=\left(\dfrac{x^2}{2}+x\right)^2+\dfrac{3}{4}\left(x-\dfrac{2}{3}\right)^2+\dfrac{2}{3}>0\) ; \(\forall x\)

\(\Rightarrow x^4+x^3+1=0\) vô nghiệm

b.

\(x^4+x+1=\left(x^4-x^2+\dfrac{1}{4}\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\)

\(=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\)

\(\Rightarrow x^4+x+1=0\) vô nghiệm

Bình luận (0)
AH
6 tháng 7 2021 lúc 15:28

Lời giải:
a. 

$2(x^4+x^3+1)=2x^4+2x^3+2=(x^4+2x^3+x^2)+x^4-x^2+1$

$=(x^2+x)^2+(x^2-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^4+x^3+1>0, \forall x\in\mathbb{R}$

Do đó pt $x^4+x^3+1=0$ vô nghiệm.

b.

$x^4+x+1=(x^4-x^2+\frac{1}{4})+(x^2+x+\frac{1}{4})+\frac{1}{2}$

$=(x^2-\frac{1}{2})^2+(x+\frac{1}{2})^2+\frac{1}{2}\geq \frac{1}{2}>0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^4+x+1=0$ vô nghiệm (đpcm).

Bình luận (0)
PA
Xem chi tiết
NM
10 tháng 9 2021 lúc 9:51

\(=x+x^2-x^3+x^4-x^5+2+2x-2x^2+2x^3-2x^4-\left(1+x+x^2+x^3+x^4-x-x^2-x^3-x^4-x^5\right)\\ =2+3x-x^2+x^3-x^4-x^5-1\\ =-x^5-x^4+x^3-x^2+3x+1\)

 

Bình luận (0)