Những câu hỏi liên quan
AP
Xem chi tiết
MY
Xem chi tiết
LH
24 tháng 5 2021 lúc 12:09

\(P=-3x^2-4x\sqrt{y}+16x--y+12\sqrt{y}+1999\)

\(=-2\left(x^2+2x\sqrt{y}+y\right)+12\left(x+\sqrt{y}\right)-18-x^2+4x-4+2021\)

\(=-2\left(x+\sqrt{y}\right)^2+12\left(x+\sqrt{y}\right)-18-\left(x-2\right)^2+2021\)

\(=-2\left(x+\sqrt{y}-3\right)^2-\left(x-2\right)^2+2021\)\(\le2021\) với mọi x và y không âm

Dấu = xảy ra <=> x=2 và y=1

Vậy maxP=2021 

Bình luận (0)
KN
Xem chi tiết
NL
15 tháng 1 2021 lúc 14:01

Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)

\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)

\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)

Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)

\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)

\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)

\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)

\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)

\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)

\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)

Bình luận (0)
NP
Xem chi tiết
NT
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 8 2021 lúc 14:13

\(\Leftrightarrow2y^3-6y^2+7y-3=-2x\sqrt{1-x}+2\sqrt{1-x}+\sqrt{1-x}\)

\(\Leftrightarrow2\left(y^3-3y^2+3y+1\right)+y-1=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)

\(\Leftrightarrow2\left(y-1\right)^3+y-1=2\left(\sqrt{1-x}\right)^3+\sqrt{1-x}\) (1)

Xét hàm \(f\left(t\right)=2t^3+t\)

\(f'\left(t\right)=6t^2+1>0\Rightarrow f\left(t\right)\) đồng biến

Nên (1) tương đương: \(y-1=\sqrt{1-x}\Rightarrow y=1+\sqrt{1-x}\)

\(\Rightarrow P=x+2\sqrt{1-x}+2=-\left(1-x-2\sqrt{1-x}+1\right)+4=-\left(\sqrt{1-x}-1\right)^2+4\le4\)

Bình luận (0)
IY
9 tháng 8 2021 lúc 17:26

⇒ P = x + 2 √ 1 − x + 2

= − ( 1 − x − 2 √ 1 − x + 1 ) + 4

= − ( √ 1 − x − 1 ) 2 + 4 ≤ 4

Cho xin một like đi các dân chơi à.

undefined

Bình luận (0)
CV
Xem chi tiết
LC
Xem chi tiết
KN
31 tháng 1 2020 lúc 19:34

Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)

Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)

Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)

Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)

Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)

Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)

Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)

Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)

Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)

Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)

Vậy \(n+M=\frac{171}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
H24
26 tháng 12 2019 lúc 10:22

We have:

\(P=\Sigma_{cyc}\sqrt{2x+yz}\le\sqrt{3\left[2\left(x+y+z\right)+\Sigma_{cyc}xy\right]}\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=4\)

Sign '=' happen when \(x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
HH
3 tháng 3 2018 lúc 20:45

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

Bình luận (0)