Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CT
Xem chi tiết
NA
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bình luận (0)
 Khách vãng lai đã xóa
PT
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
10 tháng 2 2019 lúc 5:46

 Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2018 lúc 17:21

Làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.

    Nhận xét: Phép giản ước số hạng  - 1 x + 7  ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 3 2022 lúc 21:26

Chọn B

Bình luận (0)
MH
30 tháng 3 2022 lúc 22:30

B.N(1;-7)

Bình luận (0)
NL
Xem chi tiết
H24
20 tháng 12 2020 lúc 17:13

rong

Bình luận (0)
NL
20 tháng 12 2020 lúc 17:46

Tập nghiệm là \(1\le x< 2\)

Bình luận (0)
TC
Xem chi tiết
AH
16 tháng 5 2021 lúc 22:10

Lời giải:

Dễ thấy 2 PT trên đều có 2 nghiệm phân biệt.

Đối với PT $(1)$, nếu $x_1,x_2$ là 2 nghiệm của  nó, áp dụng định lý Viet ta có:

\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-m^2\end{matrix}\right.\)

\(\Rightarrow \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=-\frac{3}{m^2}\)\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{-1}{m^2}\)

Theo định lý Viet đảo, $\frac{1}{x_1}, \frac{1}{x_2}$ là nghiệm của PT:

\(x^2+\frac{3}{m^2}x-\frac{1}{m^2}=0\Leftrightarrow m^2x^2+3x-1=0\)

Do đó ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 3 2021 lúc 21:38

undefined

Bình luận (0)
H24
11 tháng 3 2021 lúc 21:39

undefined

Bình luận (0)
TM
Xem chi tiết
H24
1 tháng 4 2023 lúc 20:33

a)3x-2≥x+6

<=>3x-x≥6+2

<=>2x≥8

<=>x≥4

tập nghiệm của phương trình là 

\(S=\left\{xIx\ge4\right\}\)

biểu diễn tập nghiệm trên trục số

0 4

b)(3x-6)-(-2x-1)≥0

<=>3x-6++1≥0

<=>3x+2x≥6-1

<=>5x≥5

<=>x≥1

tập nghiệm của phương trình là 

\(S=\left\{xIx\ge1\right\}\)

0 1

Bình luận (1)
NT
1 tháng 4 2023 lúc 20:05

a: =>2x>=8

=>x>=4

b: =>3x-6+2x+1>=0

=>5x-5>=0

=>x>=1

Bình luận (0)
NT
Xem chi tiết
AH
9 tháng 5 2021 lúc 23:10

** PT thì phải có dấu bằng chứ bạn.

Đặt $f(x)=x^4+x^3-3x^2+x+1$. CMR $f(x)=0$ luôn có nghiệm

---------------------------

Lời giải:

Dễ thấy $f(x)$ liên tục trên $\mathbb{R}$

Ta có:

$f(0)=1>0$

$f(-1)=-3<0$

$\Rightarrow f(0).f(-1)<0$. Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-1;0)$

$\Rightarrow f(x)=0$ luôn có nghiệm.

Bình luận (0)