chứng minh rằng x=-3 là 1 nghiệm của bất phương trình \(x^2-3x+12\ge0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Xét xem x = -3 là nghiệm của bất phương trình nào trong hai bất phương trình sau 3x + 1 < x + 3 (1) và ( 3 x + 1 ) 2 < ( x + 3 ) 2 (2)
Từ đó suy ra rằng phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.
Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.
Chứng tỏ rằng x = -7 không phải là nghiệm của bất phương trình x + 3 - 1 x + 7 < 2 - 1 x + 7 nhưng lại là nghiệm của bất phương trình x + 3 < 2.
Làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.
Nhận xét: Phép giản ước số hạng - 1 x + 7 ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.
Miền nghiệm của hệ phương trình \(\left\{{}\begin{matrix}3x-4y+12\ge0\\x+y+5\ge0\\x+1>0\end{matrix}\right.\)là miền chứa điểm nào trong các điểm sau
A.M(2;5)
B.N(1;-7)
C.P(1;-2)
D.Q(-2;-3)
Tập nghiệm của bất phương trình : \(\dfrac{x-1}{2-x}\ge0\) là ?
Tập nghiệm là \(1\le x< 2\)
Chứng minh rằng nghiệm của phương trình \(x^2-3x-m^2=0\) là nghịch đảo các nghiệm của phương trình \(m^2x^2+3x-1=0\) khi m ≠ 0
Lời giải:
Dễ thấy 2 PT trên đều có 2 nghiệm phân biệt.
Đối với PT $(1)$, nếu $x_1,x_2$ là 2 nghiệm của nó, áp dụng định lý Viet ta có:
\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-m^2\end{matrix}\right.\)
\(\Rightarrow \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=-\frac{3}{m^2}\); \(\frac{1}{x_1}.\frac{1}{x_2}=\frac{-1}{m^2}\)
Theo định lý Viet đảo, $\frac{1}{x_1}, \frac{1}{x_2}$ là nghiệm của PT:
\(x^2+\frac{3}{m^2}x-\frac{1}{m^2}=0\Leftrightarrow m^2x^2+3x-1=0\)
Do đó ta có đpcm.
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
2. Giải bất phương trình và biểu diễn tập nghiệm trên trục số
a) \(3x-2\ge x+6\)
b) (\(3x-6\)) \(-\left(-2x-1\right)\)\(\ge0\)
a)3x-2≥x+6
<=>3x-x≥6+2
<=>2x≥8
<=>x≥4
tập nghiệm của phương trình là
\(S=\left\{xIx\ge4\right\}\)
biểu diễn tập nghiệm trên trục số
b)(3x-6)-(-2x-1)≥0
<=>3x-6++1≥0
<=>3x+2x≥6-1
<=>5x≥5
<=>x≥1
tập nghiệm của phương trình là
\(S=\left\{xIx\ge1\right\}\)
a: =>2x>=8
=>x>=4
b: =>3x-6+2x+1>=0
=>5x-5>=0
=>x>=1
Chứng minh rằng phương trình sau luôn có nghiệm: x^4+x^3-3x^2+x+1
** PT thì phải có dấu bằng chứ bạn.
Đặt $f(x)=x^4+x^3-3x^2+x+1$. CMR $f(x)=0$ luôn có nghiệm
---------------------------
Lời giải:
Dễ thấy $f(x)$ liên tục trên $\mathbb{R}$
Ta có:
$f(0)=1>0$
$f(-1)=-3<0$
$\Rightarrow f(0).f(-1)<0$. Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-1;0)$
$\Rightarrow f(x)=0$ luôn có nghiệm.