Những câu hỏi liên quan
H24
Xem chi tiết
AH
30 tháng 7 2021 lúc 10:34

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

Bình luận (0)
AH
30 tháng 7 2021 lúc 10:39

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$

Bình luận (0)
AH
30 tháng 7 2021 lúc 10:42

f.

$x^2-(\sqrt{2}+\sqrt{8})x+4=0$

$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$

$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$

$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$

$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$

$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$

g.

$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$

$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$

$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$

$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$

$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$

 

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NM
10 tháng 12 2021 lúc 19:46

\(PT\Leftrightarrow\left(x^3+6x^2+12x+8\right)+2\sqrt{\left(x+2\right)^3}+1-9x^2-18x-9=0\\ \Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}+1-9\left(x+1\right)^2=0\\ \Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2-9\left(x+1\right)^2=0\\ \Leftrightarrow\left[\sqrt{\left(x+2\right)^3}-3x-2\right]\left[\sqrt{\left(x+2\right)^3}+3x+4\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{\left(x+2\right)^3}=3x+2\\\sqrt{\left(x+2\right)^3}=-3x-4\end{matrix}\right.\)

\(TH_1:\sqrt{\left(x+2\right)^3}=3x+2\\ \Leftrightarrow x^3+6x^2+12x+8=9x^2+12x+4\left(x\ge-\dfrac{2}{3}\right)\\ \Leftrightarrow x^3-3x^2+4=0\\ \Leftrightarrow x^3+x^2-4x^2+4=0\\ \Leftrightarrow x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

\(TH_2:\sqrt{\left(x+2\right)^3}=-3x-4\\ \Leftrightarrow x^3+6x^2+12x+8=9x^2+24x+16\left(x\le-\dfrac{4}{3}\right)\\ \Leftrightarrow x^3-3x^2-12x-8=0\\ \Leftrightarrow x^3+x^2-4x^2-4x-8x-8=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-4x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=2+2\sqrt{3}\left(ktm\right)\\x=2-2\sqrt{3}\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(S=\left\{2;2-2\sqrt{3}\right\}\)

Bình luận (0)
NL
10 tháng 12 2021 lúc 19:53

ĐKXĐ: \(x\ge-2\)

\(x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)

Đặt \(\sqrt{x+2}=a\ge0\) pt trở thành:

\(x^3-3x.a^2+2a^3=0\)

\(\Leftrightarrow\left(x-a\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(x\ge0\right)\\2\sqrt{x+2}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-4x-8=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=2\\x=2+2\sqrt{3}\left(loại\right)\\x=2-2\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
PN
Xem chi tiết
NT
22 tháng 2 2022 lúc 18:35

\(ĐK:x\ge-2\)

\(\Leftrightarrow x^3+6x^2+12x+8+2\sqrt{\left(x+2\right)^3}+1-9x^2-18x-9=0\)

\(\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}+1-\left(9x^2+18x+9\right)=0\)

\(\Leftrightarrow\left[\left(x+2\right)^3+1\right]^2-9\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left[\left(x+2\right)^3+1\right]^2-9\left(x+1\right)^2=0\)

ta có: ( 2 trường hợp xảy ra )

TH1: \(\left[\left(x+2\right)^3+1\right]^2=9\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+2\right)^3+1=\left(9x+9\right)\)

\(\Leftrightarrow\left(x+2\right)^3-9x=8\)

\(\Leftrightarrow x^3+6x^2+12x+8-9x-8=0\)

\(\Leftrightarrow x^3+6x^2+3x=0\)

\(\Leftrightarrow x\left(x^2+6x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+6x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\\left[{}\begin{matrix}x=-3+\sqrt{6}\left(n\right)\\-3-\sqrt{6}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

TH2:\(\left[{}\begin{matrix}\left(x+3\right)^3+1=0\\9\left(x+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^3=-1\\\left(9x+9\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\9x=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=-1\left(n\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-1;-3+\sqrt{6}\right\}\)

( ko bít đúng ko nha bạn ơi )

Bình luận (0)
DT
Xem chi tiết
KC
Xem chi tiết
MY
19 tháng 6 2021 lúc 17:55

ta có:

pt trên \(< =>x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(< =>\left[\left(x^2+6x\right)+1\right]^2=\left(2x+1\right)^2.\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+36x^2+2.\left(x^2+6x\right)+1=\left(4x^2+4x+1\right)\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+38x^2+12x+1=\)

\(4x^4+8x^3+12x^2+4x^3+8x^2+12x+x^2+2x+3\)

\(=4x^4+12x^3+21x^2+14x+3\)

\(< =>-3x^4+17x^2-2x-2=0\)

\(< =>-\left(x^2+2x-1\right)\left(3x^2-6x+2\right)=0\)

đến đây dễ rùi bạn tự giải nhé 

 

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
N2
20 tháng 5 2022 lúc 12:24

\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)

\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)

\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)

`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)

`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)

Bình luận (3)
NT
Xem chi tiết
NL
8 tháng 5 2021 lúc 14:18

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)

 

 

Bình luận (0)