H24

Giải phương trình \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)

NM
10 tháng 12 2021 lúc 19:46

\(PT\Leftrightarrow\left(x^3+6x^2+12x+8\right)+2\sqrt{\left(x+2\right)^3}+1-9x^2-18x-9=0\\ \Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}+1-9\left(x+1\right)^2=0\\ \Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2-9\left(x+1\right)^2=0\\ \Leftrightarrow\left[\sqrt{\left(x+2\right)^3}-3x-2\right]\left[\sqrt{\left(x+2\right)^3}+3x+4\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{\left(x+2\right)^3}=3x+2\\\sqrt{\left(x+2\right)^3}=-3x-4\end{matrix}\right.\)

\(TH_1:\sqrt{\left(x+2\right)^3}=3x+2\\ \Leftrightarrow x^3+6x^2+12x+8=9x^2+12x+4\left(x\ge-\dfrac{2}{3}\right)\\ \Leftrightarrow x^3-3x^2+4=0\\ \Leftrightarrow x^3+x^2-4x^2+4=0\\ \Leftrightarrow x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

\(TH_2:\sqrt{\left(x+2\right)^3}=-3x-4\\ \Leftrightarrow x^3+6x^2+12x+8=9x^2+24x+16\left(x\le-\dfrac{4}{3}\right)\\ \Leftrightarrow x^3-3x^2-12x-8=0\\ \Leftrightarrow x^3+x^2-4x^2-4x-8x-8=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-4x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=2+2\sqrt{3}\left(ktm\right)\\x=2-2\sqrt{3}\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(S=\left\{2;2-2\sqrt{3}\right\}\)

Bình luận (0)
NL
10 tháng 12 2021 lúc 19:53

ĐKXĐ: \(x\ge-2\)

\(x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)

Đặt \(\sqrt{x+2}=a\ge0\) pt trở thành:

\(x^3-3x.a^2+2a^3=0\)

\(\Leftrightarrow\left(x-a\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(x\ge0\right)\\2\sqrt{x+2}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-4x-8=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=2\\x=2+2\sqrt{3}\left(loại\right)\\x=2-2\sqrt{3}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
UN
Xem chi tiết
UN
Xem chi tiết
UN
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
LV
Xem chi tiết
NV
Xem chi tiết