Những câu hỏi liên quan
DA
Xem chi tiết
TA
Xem chi tiết
MH
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Bình luận (0)
NT
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2018 lúc 8:43

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 8 2017 lúc 16:49

Sơ đồ con đường

Lời giải chi tiết

 

Xét  5 3 . 5 2 − 5 + 1 = 5 3 .21

Áp dụng tính chất chia hết của một tích:

21 ⋮ 7 ⇒ 5 3 .21 ⋮ 7 ⇒ 5 3 . 5 2 − 5 + 1 ⋮ 7 ⇒ 5 5 − 5 4 + 5 3   ⋮ 7

Bình luận (0)
TN
Xem chi tiết
DT
19 tháng 11 2023 lúc 10:40

\(A=\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5^2.\left(1+5\right)+5^4.\left(1+5\right)+...+5^{2020}.\left(1+5\right)\\ =5^2.6+5^4.6+...+5^{2020}.6\\ =6.\left(5^2+5^4+...+5^{2020}\right)⋮6\)

Bình luận (0)
LH
Xem chi tiết
H24
28 tháng 12 2022 lúc 10:41

loading...

Bình luận (0)
PD
Xem chi tiết
HS
Xem chi tiết
TC
27 tháng 8 2021 lúc 10:17

undefined

Bình luận (0)
NT
27 tháng 8 2021 lúc 14:39

a: \(125^5:25^3=5^{15}:5^6=5^9\)

b: \(27^6:9^3=3^{18}:3^6=3^{12}\)

c: \(4^{20}:2^{15}=2^{40}:2^{15}=2^{45}\)

d: \(24^n:2^{2n}=24^n:4^n=6^n\)

e: \(64^4\cdot16^5:4^{20}=2^{24}\cdot2^{20}:2^{40}=2^4\)

Bình luận (0)
TP
Xem chi tiết
NM
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Bình luận (0)
NM
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Bình luận (0)
LT
25 tháng 12 2021 lúc 20:18

đúng rùi

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
TM
9 tháng 9 2017 lúc 22:35

a) = 53. 52- 53 .5+ 53

= 53 .( 52- 5+1)

=53. 21 mà 21 chia hết cho 7

=) 55 - 54 + 53 chia hết cho 7

b)= 74.72 + 74.7 -74

= 74( 72+ 7-1)

=74. 55 mà 55chia hết cho 11

=)7^6 + 75-74 chia hết cho 11

c)=( 2.3.4)2.27 . (2.27)2.3.4 . ( 2)2.5

= ( 6. 4) 6.9 . ( 6. 9 ) 6.4. 210

= 246. 249. 546.549 . 210

=12966 . 12964.210mà 1296 chia hết cho 72 ( vì 1296 : 72 bằng 18)

=)24^54. 54^24 + 2^10 chia hết cho 72 ^53

Bình luận (0)
TM
26 tháng 9 2017 lúc 17:59

ê ko tick à

Bình luận (0)