TP

Bài 1: a, Chứng minh: A=21+22+23+24+...+22010 chia hết cho 3 và 7
          b, Chứng minh: B=31+32+33+34+...+22010 chia hết cho 4 và 13
          c, Chứng minh: C=51+52+53+54+...+52010 chia hết cho 6 và 31
          d, Chứng minh: C=71+72+73+74+...+72010 chia hết cho 8 và 57
Bài 2: So sánh
a, A=20+21+22+23+...+22011 và B=22011-1
b, A=2019.2021 và B=20202

NM
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Bình luận (0)
NM
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Bình luận (0)
LT
25 tháng 12 2021 lúc 20:18

đúng rùi

Bình luận (0)
 Khách vãng lai đã xóa
LH
28 tháng 12 2021 lúc 10:43

bao co tao long nay

 

Bình luận (0)

Các câu hỏi tương tự
NY
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
PN
Xem chi tiết
TA
Xem chi tiết
PT
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết