Những câu hỏi liên quan
H24
Xem chi tiết
H24
11 tháng 3 2021 lúc 21:38

undefined

Bình luận (0)
H24
11 tháng 3 2021 lúc 21:39

undefined

Bình luận (0)
AN
Xem chi tiết
NL
21 tháng 2 2021 lúc 17:03

\(\Leftrightarrow\sqrt{-x^2-2x+15}-x^2-2x+15\le a+15\)

Đặt \(\sqrt{-x^2-2x+15}=t\ge0\)

Đồng thời ta có: \(\sqrt{-x^2-2x+15}=\sqrt{\left(x+5\right)\left(3-x\right)}\le\dfrac{1}{2}\left(x+5+3-x\right)=4\)

\(\Rightarrow0\le t\le4\)

BPT trở thành: \(t^2+t\le a+15\Leftrightarrow t^2+t-15\le a\) ; \(\forall t\in\left[0;4\right]\)

\(\Leftrightarrow a\ge\max\limits_{t\in\left[0;4\right]}\left(t^2+t-15\right)\)

Xét hàm \(f\left(t\right)=t^2+t-15\) trên \(\left[0;4\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)

\(\Rightarrow f\left(t\right)_{max}=4\Rightarrow a\ge4\)

Bình luận (2)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:09

Bước 1: Mở trang Geoebra

Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô

Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).

Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:

x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.

Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y =  - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.

Bình luận (0)
LN
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 3 2022 lúc 23:35

ĐKXĐ: \(x>4\)

\(\dfrac{x-2}{\sqrt{x-4}}\le\dfrac{4}{\sqrt{x-4}}\Rightarrow x-2\le4\)

\(\Rightarrow x\le6\Rightarrow4< x\le6\)

\(\Rightarrow x=\left\{5;6\right\}\Rightarrow5+6=11\)

Bình luận (0)
H24
Xem chi tiết
TT
15 tháng 3 2022 lúc 7:34

x=\(\left\{{}\begin{matrix}x=3\\x=-3\\x=-2\end{matrix}\right.\)

Bình luận (3)
H24
15 tháng 3 2022 lúc 8:11

\(\Rightarrow\) (-\(\infty\); -3] \(\cup\) { 3 }

Bình luận (0)
BB
Xem chi tiết
DC
Xem chi tiết
TS
29 tháng 4 2019 lúc 8:47

\(\left(16-x^2\right)\sqrt{x-3}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\16-x^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\in(-\infty;-4]\cup[4;+\infty)\end{matrix}\right.\)

\(\Leftrightarrow\left\{3\right\}\cup[4;+\infty)\)

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 3 2022 lúc 21:26

TXĐ: \(x>-4\)

Khi đó BPT tương đương:

\(x^2+2x>3\Leftrightarrow x^2+2x-3>0\)

\(\Rightarrow\left[{}\begin{matrix}x>1\\x< -3\end{matrix}\right.\)

Vậy tập nghiệm của BPT là: \(\left[{}\begin{matrix}x>1\\-3< x< -3\end{matrix}\right.\)

Bình luận (0)