Những câu hỏi liên quan
PM
Xem chi tiết
BQ
4 tháng 4 2020 lúc 9:50

GTNN:

Ta có M= |x-2013|+|x-2|= |2013-x|+|x-2| >= |x-2+2013-x|=2011

(vì giá trị tuyệt đối của một tổng luôn nhỏ hơn hoặc bằng tổng của các giá trị tuyệt đối)

Nên min M =2011. Dấu ''='' xảy ra khi và chỉ khi (2013-x)(x-2) >= 0

<=> 2<=x<=2013.

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NL
12 tháng 12 2021 lúc 22:21

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

Bình luận (0)
NU
Xem chi tiết
DH
15 tháng 12 2018 lúc 15:52

\(M=\left|x-2012\right|+\left|x-2013\right|=\left|x-2012\right|+\left|2013-x\right|\)

                                                               \(\ge\left|x-2012+2013-x\right|=1\)

Áp dụng công thức: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

Dấu "=" xảy ra <=> \(\left(x-2012\right).\left(2013-x\right)\ge0\)

\(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)

Vậy Mmin = 1 khi và chỉ khi x={2012;2013}

Bình luận (0)
NP
Xem chi tiết
NT
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Bình luận (0)
VQ
Xem chi tiết
LT
11 tháng 11 2021 lúc 21:33
Thôi nhắn chả hiểu luôn
Bình luận (0)
 Khách vãng lai đã xóa
LT
11 tháng 11 2021 lúc 21:34
Chịu vì nhắn ko hiểu luôn
Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
TC
14 tháng 11 2021 lúc 20:28

Ta có:

\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)

\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)

Áp dụng BĐT Bunhiacopxki, ta có:

\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)

\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)

Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)

Bình luận (3)
H24
Xem chi tiết
NN
26 tháng 12 2022 lúc 14:50

đợi tý

Bình luận (0)
WS
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Bình luận (0)
DM
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Bình luận (0)
KF
Xem chi tiết
H9
30 tháng 8 2023 lúc 10:56

Ta có: 

\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\)

Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\) 

Dấu "=" xảy ra:

\(4\sqrt{x}-x=0\)

\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Bình luận (1)
H24
Xem chi tiết
NL
30 tháng 6 2021 lúc 17:11

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

Bình luận (0)
EC
30 tháng 6 2021 lúc 17:11

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

Bình luận (0)