Những câu hỏi liên quan
TN
Xem chi tiết
NL
23 tháng 6 2020 lúc 6:29

ĐKXĐ: \(\frac{2}{3}\le x\le5\)

\(\Leftrightarrow\sqrt{2x+7}\ge\sqrt{5-x}+\sqrt{3x-2}\)

\(\Leftrightarrow2x+7\ge2x+3+2\sqrt{-3x^2+17x-10}\)

\(\Leftrightarrow\sqrt{-3x^2+17x-10}\le2\)

\(\Leftrightarrow-3x^2+17x-10\le4\)

\(\Leftrightarrow3x^2-17x+14\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge\frac{14}{3}\end{matrix}\right.\)

Kết hợp ĐKXĐ: \(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}\le x\le1\\\frac{14}{3}\le x\le5\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
RH
6 tháng 10 2021 lúc 21:16

1) a) x<=11/2

b) x>=2

c) x#0

d) x>7

 

Bình luận (0)
NM
6 tháng 10 2021 lúc 21:17

\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)

Bình luận (2)
NT
6 tháng 10 2021 lúc 21:21

Bài 2:

a: \(\sqrt{16x^2}-2x^2=4x-2x^2\)

c: \(\sqrt{\left(x-5\right)^2}-4x=5-4x-x=5-5x\)

Bình luận (0)
AT
Xem chi tiết
H24
Xem chi tiết
TQ
11 tháng 6 2021 lúc 9:43

a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)   (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )

Khi đó pt :

<=> 7+a =3 + \(\sqrt{5}\)

<=> 4+a = \(\sqrt{5}\)

<=> (4+a)\(^2\) = 5

<=> 16 + 8a + a\(^2\) = 5

<=>a\(^2\) + 8a+ 11 = 0

<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại) 

Vậy Pt vô nghiệm.

b) \(\sqrt{3x^2-4x}\) = 2x-3

<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9 

<=> x\(^2\)-8x+9 = 0

<=> x=1 , x=9 

Vậy S={1;9} 

c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2

<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)

<=> x=7,x=5

Vậy x=5 hoặc x=7

 

Bình luận (0)
NT
Xem chi tiết
MT
28 tháng 7 2017 lúc 22:59

a) \(2\sqrt{3}-4\sqrt{3x}+27-3\sqrt{3x}\)

= \(\left(2\sqrt{3}+27\right)-\left(4\sqrt{3x}+3\sqrt{3x}\right)\)

=\(\sqrt{3}\left(2+3\right)-\sqrt{3x}\left(4-3\right)\)

=\(5\sqrt{3}-\sqrt{3x}\)

=\(\sqrt{3}\left(5-\sqrt{x}\right)\)

b)\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)

=\(3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)

=\(\sqrt{2x}\left(3-10+21\right)+28\)

=\(14\sqrt{2x}+28\)

=\(14\sqrt{2}\left(\sqrt{x}+\sqrt{2}\right)\)

Bình luận (0)
DF
Xem chi tiết
AH
2 tháng 1 2021 lúc 13:46

Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.

Bình luận (0)
NT
Xem chi tiết
LN
Xem chi tiết
XL
Xem chi tiết
NT
13 tháng 8 2020 lúc 10:48

Bài 1:

a) Ta có: \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2}{\sqrt{2}}\)

\(=\frac{\sqrt{5+2\cdot\sqrt{5}\cdot1+1}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}-2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2}{\sqrt{2}}\)

\(=\frac{\sqrt{5}+1-\left(\sqrt{5}-1\right)-2}{\sqrt{2}}\)(Vì \(\sqrt{5}>1>0\))

\(=\frac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=\frac{2-2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

\(=\sqrt{\frac{7}{2}-2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}-\sqrt{\frac{7}{2}+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}+\sqrt{7}\)

\(=\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}+\sqrt{7}\)

\(=\left|\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}\right|-\left|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right|+\sqrt{7}\)

\(=\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)+\sqrt{7}\)(Vì \(\sqrt{\frac{7}{2}}>\sqrt{\frac{1}{2}}>0\))

\(=\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}-\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}+\sqrt{7}\)

\(=-2\sqrt{\frac{1}{2}}+\sqrt{7}\)

\(=-\sqrt{2}+\sqrt{7}\)

Bình luận (0)