Những câu hỏi liên quan
NT
Xem chi tiết
LC
21 tháng 7 2015 lúc 14:44

Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.

Với n = 1 thì n2005 + 2005 + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.

Với n > 1 thì đều ra trường hợp không chia hết cho 3.

             Vậy n = 1

Bình luận (0)
H24
21 tháng 7 2015 lúc 16:32

vi 2005 chia cho 3 du 1 nen 2005n=3k+1

ta chia 3TH:

TH1:n=3k

=>2005n+n2005+2005n=(3k+1+3k+3k) chia cho 3 du 1(loại)

TH2:n=3k+1

=>2005n+n2005+2005n=3k+1+3k+1+3k+1=3(3k+1)chia het cho 3

TH3:n=3k+2

=>2005n+n2005+2005n=3k+1+3k+2+3k+2=3.3k+5chia cho 3 du 1(loai)

vậy n có dang 3k+1 thi 2005n+n2005+2005n chia het cho 3

Bình luận (0)
NH
Xem chi tiết
DV
21 tháng 5 2015 lúc 20:00

Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.

Với n = 1 thì n2005 + 2005 + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.

Với n > 1 thì đều ra trường hợp không chia hết cho 3.

             Vậy n = 1

Bình luận (0)
RL
21 tháng 5 2015 lúc 20:09

ta xét;

(*)n=0=>n^2005+2005^n+2005n =0^2005+2005^0+2005x0=1+1+0=2 (không chia hết cho 3)

(*)n=1 =>n^2005+2005^n+2005n=1^2005+2005^1+2005x1=1+2005x2=4011(không chia hết cho 3)

(*)n>1 thi2 n^2005+2005^n+2005n sẽ không chia hết cho 3 Hay n=1

Bình luận (0)
CT
Xem chi tiết
H24
Xem chi tiết
H24
2 tháng 8 2021 lúc 22:22

Mà \(125⋮5\Rightarrow\left(2n-1\right)^3+75⋮5\) mà \(75⋮5\Rightarrow\left(2n-1\right)^3⋮5\)

Vì 5 nguyên tố \(\Rightarrow2n-1⋮5\Rightarrow\left(2n-1\right)^3⋮125\) nhưng 75 \(⋮̸\)125 (vô lí)

Vậy \(4n^3-6n^2+3n+37\)\(⋮̸\)125

Bình luận (0)
H24
3 tháng 8 2021 lúc 8:25

.

Bình luận (0)
LT
Xem chi tiết
NM
19 tháng 11 2021 lúc 10:48

\(a,\Rightarrow n+2+4⋮n+2\\ \Rightarrow n+2\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\\ b,\Rightarrow n-1+4⋮n-1\\ \Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{2;3;5\right\}\)

Bình luận (0)
LT
19 tháng 11 2021 lúc 10:52

có ai giải hộ tui ko vậy

Bình luận (0)
NN
19 tháng 11 2021 lúc 10:56

Câu trả lời của mk đây nha bạn Lê Ngọc Anh Thư
Tìm số tự nhiên n sao cho:
a,n+6 chia hết cho n+2
   n+2 ∈ Ư(4)={1;2;4}
   n+2 ∈ {0;2}

b,n-1+4⋮n-1
   n-1 ∈ Ư(4)={1;2;4}
   n ∈ {2;3;5}

(Chúc bạn học tốt nha)^^

   
Bình luận (0)
DM
Xem chi tiết
VL
25 tháng 12 2020 lúc 12:07

Ta có: n+3 chia hết cho n-1

mà: n-1 chia hết cho n-1

suy ra:[(n+3)-(n-1)]chia hết cho n-1

              (n+3-n+1)chia hết cho n-1

                        4    chia hết cho n-1

                  suy ra n-1 thuộc Ư(4)

           Ư(4)={1;2;4}

suy ra n-1 thuộc {1;2;4}

Ta có bảng sau:

n-1          1             2           4

n              2             3           5

    Vậy n=2 hoặc n=3 hoặc n=5 

 

Bình luận (1)
VL
25 tháng 12 2020 lúc 18:41

Ta có: 2n+1 chia hết cho 2n+1

   nên  2.(2n+1) chia hết cho 2n+1

 suy ra 4n+1 chia hết cho 2n+1

Ta có hiệu sau:

[(4n+3)-(4n+1)] chia hết cho 2n+1

     (4n+3-4n-1) chia hết cho 2n+1

               2     chia hết cho 2n+1

       suy ra  2n+1 thuộc Ư(2)

   Ư(2)={1;2}

suy ra 2n+1∈{1;2}

Ta có bảng sau:

2n+1         1         2

  2n            0        1

   n             0        1/2

    Vậy n=0

Bình luận (0)
IT
13 tháng 1 2021 lúc 7:24

a) để n+3⋮n-1

thì n-1+4⋮n-1

⇒4⋮n-1

⇒n-1∈Ư(4)={1;2;4}

\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=3\\n=5\end{matrix}\right.\)

vậy n∈{2;3;5}

b)để 4n+3⋮2n+1

thì  2.2n+1+2⋮2n+1

⇒2⋮2n+1

⇒2n+1∈Ư(2)={1;2}

\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=\dfrac{1}{2}\end{matrix}\right.\)

vì n là số tự nhiên

⇒n=0

vậy n=0

(tick cho mk nhahaha)

Bình luận (0)
AB
Xem chi tiết
NM
24 tháng 9 2021 lúc 15:17

\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)

Bình luận (0)
DA
Xem chi tiết
LL
15 tháng 11 2021 lúc 15:21

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

Bình luận (0)
H24
1 tháng 11 2024 lúc 18:43

Bạn này làm sai r

Bình luận (0)
H24
Xem chi tiết
NL
3 tháng 8 2021 lúc 9:53

Đặt \(A=2005^n+60^n-1897^n-168^n\)

\(2004=4.3.167\)

2005 chia 4 dư 1 nên \(2005^n\equiv1\left(mod4\right)\)

\(1897\) chia 4 dư 1 nên \(1897^n\equiv1\left(mod4\right)\)

Tương tự: \(60^n\equiv0\left(mod4\right)\) ; \(168^n\equiv0\left(mod4\right)\)

\(\Rightarrow2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod4\right)\)

\(\Rightarrow A⋮4\)

Cũng làm như vậy, ta có:

\(2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod3\right)\)

\(\Rightarrow A⋮3\)

\(2005^n+60^n-1897^n-168^n\equiv1+60^n-60^n-1\equiv0\left(mod167\right)\)

\(\Rightarrow A⋮167\)

Mà 4, 3, 167 nguyên tố cùng nhau

\(\Rightarrow A⋮\left(4.3.167\right)\) hay \(A⋮2004\)

Bình luận (1)