Đặt \(A=2005^n+60^n-1897^n-168^n\)
\(2004=4.3.167\)
2005 chia 4 dư 1 nên \(2005^n\equiv1\left(mod4\right)\)
\(1897\) chia 4 dư 1 nên \(1897^n\equiv1\left(mod4\right)\)
Tương tự: \(60^n\equiv0\left(mod4\right)\) ; \(168^n\equiv0\left(mod4\right)\)
\(\Rightarrow2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod4\right)\)
\(\Rightarrow A⋮4\)
Cũng làm như vậy, ta có:
\(2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod3\right)\)
\(\Rightarrow A⋮3\)
\(2005^n+60^n-1897^n-168^n\equiv1+60^n-60^n-1\equiv0\left(mod167\right)\)
\(\Rightarrow A⋮167\)
Mà 4, 3, 167 nguyên tố cùng nhau
\(\Rightarrow A⋮\left(4.3.167\right)\) hay \(A⋮2004\)