Những câu hỏi liên quan
NN
Xem chi tiết
TA
25 tháng 3 2021 lúc 20:19

Ta có x + my = 1 và mx + y = 1
<=> x = 1 - my và mx + y = 1
<=> x = 1 - my và m(1 - my) + y = 1
<=> x = 1 - my và m - m^2y + y = 1
<=> x = 1 - my và y(1 - m^2) = 1 - m
Để hpt có nghiệm duy nhất thì pt y(1 - m^2) = 1 - m có nghiệm duy nhất
<=> 1 - m^2 ≠ 0
<=> (1 - m)(1 + m) ≠ 0
<=> m ≠ ±1
Khi đó nghiệm duy nhất của hpt sẽ là
x = 1 - m/(1 + m) và y = 1/(1 + m)
Để x , y > 0
thì 1 - m/(1 + m) > 0 và 1/(1 + m) > 0
<=> 1/(1 + m) > 0
<=> m + 1 > 0
<=> m > -1
và m ≠ ±1
do đó m > - 1 và m ≠ 1
Vậy m > - 1 và m ≠ 1 thì hpt có nghiệm duy nhất thỏa mãn x , y > 0

Bình luận (0)
 Khách vãng lai đã xóa
MD
Xem chi tiết
TH
30 tháng 3 2021 lúc 21:16

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=m^2-2m+1\end{matrix}\right.\)

Với m = 1 ta có: \(\left\{{}\begin{matrix}x=2-y\\0y=0\left(VSN\right)\end{matrix}\right.\)

\(\Rightarrow\) Hpt vô số nghiệm

Với m = -1 ta có: \(\left\{{}\begin{matrix}x=y\\0y=4\left(VN\right)\end{matrix}\right.\)

\(\Rightarrow\) Hpt vô nghiệm

Với m \(\ne\) \(\pm\)1 ta có: \(\left\{{}\begin{matrix}x=m+1-my\\y=\dfrac{m^2-2m+1}{m^2-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-\dfrac{m\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=m+1-\dfrac{m\left(m-1\right)}{m+1}=m+1-\dfrac{m^2-m}{m+1}\\y=\dfrac{m^2-2m+1}{m^2-1}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=\dfrac{m-1}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)

Vậy hpt có nghiệm duy nhất x = ..; y = ... với x \(\ne\) \(\pm\) 1

Ta có: x = |y|

\(\Leftrightarrow\) \(\dfrac{3m+1}{m+1}=\left|\dfrac{m-1}{m+1}\right|\) 

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\dfrac{3m+1}{m+1}=\dfrac{m-1}{m+1}\\\dfrac{3m+1}{m+1}=\dfrac{1-m}{m+1}\end{matrix}\right.\)

\(\Rightarrow\) \(\left[{}\begin{matrix}3m+1=m-1\\3m+1=1-m\end{matrix}\right.\) (Vì m \(\ne\) -1)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2m=-2\\4m=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=-1\\m=0\end{matrix}\right.\) 

Vì m \(\ne\) -1 nên m = -1 KTM

\(\Rightarrow\) m = 0 thỏa mãn đk

Vậy m = 0

Chúc bn học tốt!

Bình luận (0)
MG
Xem chi tiết
LM
Xem chi tiết
NT
14 tháng 12 2023 lúc 10:55

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
KR
Xem chi tiết
NL
5 tháng 1 2021 lúc 18:06

a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)

\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)

Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)

\(\Rightarrow m=\left\{-1;0;...;7\right\}\)

b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)

Bình luận (0)
HN
Xem chi tiết
ZN
22 tháng 11 2021 lúc 20:27

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HY
Xem chi tiết
KL
3 tháng 2 2021 lúc 20:55

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

Bình luận (1)
PB
Xem chi tiết