\(\left\{{}\begin{matrix}mx+y=m\\mx+m^2y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+y=m\\\left(m^2-1\right)y=0\end{matrix}\right.\)
Hệ đã cho có nghiệm duy nhất \(\Leftrightarrow m^2-1\ne0\)
\(\Leftrightarrow m\ne\pm1\)
\(\left\{{}\begin{matrix}mx+y=m\\mx+m^2y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+y=m\\\left(m^2-1\right)y=0\end{matrix}\right.\)
Hệ đã cho có nghiệm duy nhất \(\Leftrightarrow m^2-1\ne0\)
\(\Leftrightarrow m\ne\pm1\)
cho hpt sau mx + y =m và x+my=1. tìm m để hpt có nghiêm duy nhất.
Cho hệ phương trình (m+1)x +8y =4m
mx + (m+3)y=3m-1
tìm m nguyên để hpt có nghiệm duy nhất (x;y) thỏa mãn x,y ϵ Z
Cho hệ PT \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
a, giải hpt khi m= -1
b, tìm m để hpt vô nghiệm
c, tìm m để hpt có nghiệm duy nhất (x,y) thỏa mãn \(2x-3y=1\)
Cho hpt sau:\(\left\{{}\begin{matrix}mx-y=3-m\\x-my=2m\end{matrix}\right.\)
Tìm m để hpt có No duy nhất x,y thỏa mãn
a.x+y=3
b.x nhỏ hơn 0.y lớn hơn 0
c.Tìm m để x nguyên , y nguyên
d.Tìm hpt liên hệ giữa x,y không phụ thuộc vào m
Cho hpt: {mx+y=1; 4x+my=2 (m là tham số)
Tìm m để hệ có nghiệm duy nhất thỏa mãn x-y=1
Tìm m để hệ có nghiệm duy nhất thỏa mãn x+y=1
Cho hệ pt: x+my=9
mx-3y=4
1/ Với giá trị nào của m để hệ có nghiệm (-1;3)
2/ Chứng tỏ răng hệ phương trình luôn luôn có nghiệm duy nhất
3/với giá trị nào của m để nghiêm(x;y) thỏa mãn hệ thức: x-3y=[28/(m^2+3)]-3
Cho hệ phương trình (m+1)x +8y =4m
mx + (m+3)y=3m-1
Tìm m để hệ phương trình có nghiệm duy nhất
Cho hệ pt \(\hept{\begin{cases}mx+4y=m+2\\x+my=m\end{cases}}\).Tìm m để hệ pt có nghiệm duy nhất (x,y) với X và y là những số nguyên.
Cho hệ PT \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
a) Giair hệ PT khi m = -1
b) Tìm m đề HPT có nghiệm duy nhất thỏa mãn x + y = 1 - \(\frac{m^2}{m^2+3}\)