|x-2| = 18-3x
C=-3x(x-4)(x-2)+x(3x-18)-25
Ta có: \(C=-3x\left(x-4\right)\left(x-2\right)+x\left(3x-18\right)-25\)
\(=-3x\left(x^2-6x+8\right)+3x^2-18x-25\)
\(=-3x^3+18x^2-24x+3x^2-18x-25\)
\(=-3x^3+21x^2-42x-25\)
3x 2 x 4 2x 2 18 x 3 3x 2 2x2x 2 3x 1x 3 5x 2 7x 12
x+3/x^2-3x+3/x^2+3x+2x-18/x^2-9
Thực hiện phép tính, rút gọn
\(\dfrac{x+3}{x^2-3x}+\dfrac{3}{x^2+3x}+\dfrac{2x-18}{x^2-9}\\ =\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
\(=\dfrac{x+3}{x\left(x-3\right)}+\dfrac{3}{x\left(x+3\right)}+\dfrac{2x-18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+6x+9+3x-9+4x-36}{x\left(x+3\right)\left(x-3\right)}=\dfrac{x^2+13x-36}{x\left(x+3\right)\left(x-3\right)}\)
tìm x biết
\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(2\sqrt{3x}+11x-18=5x+2+6\cdot\sqrt{3x}+6x-21\)
Giúp mình với
x2+8x+7
x2-5x+6
x2+3x-18
3x2 -16x+18
x2 + 8x + 7 = x2 + x + 7x + 7 = x(x + 1) + 7(x + 1)= (x + 7)(x + 1)
x2 - 5x + 6 = x2 - 2x - 3x + 6 = x(x - 2) - 3(x - 2) = (x - 3)(x - 2)
x2 + 3x - 18 = x2 + 6x - 3x - 18 = x(x + 6) - 3(x + 6) = ((x - 3)(x + 6)
\(a,x^2+8x+7=x^2+7x+x+7=x\left(x+7\right)+\left(x+7\right)=\left(x+7\right)\left(x+1\right).\)
\(b,x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
\(c,x^2+3x-18=x^2+6x-3x-18=x\left(x+6\right)-3\left(x+6\right)=\left(x+6\right)\left(x-3\right)\)
\(d,3x^2-16x+18=3x^2-4x-12x+18\)
trả lời
x^2+8x+7=(x+1)(x+7)
x^2-5x+6=(x-2)(x-3)
x^2+3x-18=(x-3)(x+6)
Bài 1: Thu gọn :
(x+1).(x+2)-3x.(x-4)
Bài 2: Tìm x:
(3x-4).(x-2)=3x.(x-9)
Bài 3: Chứng minh biểu thức không phụ thuộc vào giá trị của biến:
-3x.(x-4).(x-2)-x^2.(-3x+18)+24x-25
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
(x+3)^3-8x^3
(4x^2-3x-18)^2 (-4x^2+3x^2)^2
Bài 2. Tìm x, biết :
a) 3x – 15 = 25 – 5x b) 3x - 17 = 2x – 7 c) 2x – 17 = – (3x – 18)
d) 3x – 14 = 2(x – 9) + 1 e) f) (x – 5)2 = 9
a) 3x – 15 = 25 – 5x
=> 3x + 5x = 25 + 15
=> 8x = 40
=> x = 5
b) 3x - 17 = 2x – 7
=> 3x - 2x = -7 + 17
=> x = 10
c) 2x – 17 = – (3x – 18)
=> 2x - 17 = -3x + 18
=> 2x + 3x = 18 + 17
=> 5x = 35
=> x = 7
d) 3x – 14 = 2(x – 9) + 1
=> 3x - 14 = 2x - 18 + 1
=> 3x - 2x = -18 + 1 + 14
=> x = -3
f) (x – 5)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
a) Ta có: \(3x-15=25-5x\)
\(\Leftrightarrow3x-15-25+5x=0\)
\(\Leftrightarrow8x-40=0\)
\(\Leftrightarrow8x=40\)
hay x=5
Vậy: x=5
b) Ta có: \(3x-17=2x-7\)
\(\Leftrightarrow3x-17-2x+7=0\)
\(\Leftrightarrow x-10=0\)
hay x=10
Vậy: x=10
c) Ta có: \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=-3x+18\)
\(\Leftrightarrow2x-17+3x-18=0\)
\(\Leftrightarrow5x-35=0\)
\(\Leftrightarrow5x=35\)
hay x=7
Vậy: x=7
d) Ta có: \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14-2x+18-1=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: x=-3
f) Ta có: \(\left(x-5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;8\right\}\)
Bài 2. Tìm x, biết :
a) \(3x-15=25-5x\)
\(\Leftrightarrow8x=40\)
\(\Leftrightarrow x=5\)
Vậy x = 5
b) \(3x-17=2x-7\)
\(\Leftrightarrow x=10\)
Vậy x = 10
c) \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=18-3x\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\)
Vậy x = 7
d) \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14=2x-17\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
e) \(\left(x-5\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy x = {8; 2}
6x (3x+5) - 2x (3x-2) + (17-x) (x-1) + x (x-18) =0
Ta có: \(6x\left(3x+5\right)-2x\left(3x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)=0\)
\(\Leftrightarrow18x^2+30x-6x^2+4x+17x-17-x^2+x+x^2-18x=0\)
\(\Leftrightarrow12x^2-34x-17=0\)
\(\Leftrightarrow12\left(x^2-\frac{34}{12}x-\frac{17}{12}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{17}{12}+\frac{289}{144}-\frac{493}{144}=0\)
\(\Leftrightarrow\left(x-\frac{17}{12}\right)^2=\frac{493}{144}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{17}{12}=\frac{\sqrt{493}}{12}\\x-\frac{17}{12}=-\frac{\sqrt{493}}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17+\sqrt{493}}{12}\\x=\frac{17-\sqrt{493}}{12}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{17+\sqrt{493}}{12};\frac{17-\sqrt{493}}{12}\right\}\)
Tìm x, biết:
3x.(x2-2)-(3x3-18)=0
3x.(x^2 -2) - (3x^3 -18) =0
suy ra x=0