\(\dfrac{x+3}{x^2-3x}+\dfrac{3}{x^2+3x}+\dfrac{2x-18}{x^2-9}\\ =\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
\(=\dfrac{x+3}{x\left(x-3\right)}+\dfrac{3}{x\left(x+3\right)}+\dfrac{2x-18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+6x+9+3x-9+4x-36}{x\left(x+3\right)\left(x-3\right)}=\dfrac{x^2+13x-36}{x\left(x+3\right)\left(x-3\right)}\)