Những câu hỏi liên quan
NS
Xem chi tiết
HP
11 tháng 1 2021 lúc 18:03

ĐK: \(-1\le x\le4\)

\(\sqrt{x+1}+\sqrt{4-x}=t\left(\sqrt{5}\le t\le\sqrt{10}\right)\Rightarrow\sqrt{-x^2+3x+4}=\dfrac{t^2-5}{2}\)

\(pt\Leftrightarrow t+\dfrac{t^2-5}{2}=5\)

\(\Leftrightarrow t^2+2t-15=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)

\(\Leftrightarrow t=3\left(\text{Vì }\sqrt{5}\le t\le\sqrt{10}\right)\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)

\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)

\(\Leftrightarrow-x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Bình luận (1)
NT
Xem chi tiết
LK
Xem chi tiết
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 16:49

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 16:49

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)

Bình luận (0)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

Bình luận (0)
MA
Xem chi tiết
AH
28 tháng 7 2021 lúc 15:51

Lời giải:

Đặt $\sqrt[3]{x^2+3x-5}=a; \sqrt[3]{x+2}=b$. Khi đó pt đã cho tương đương với:

$a+b=\sqrt[3]{a^3+b^3-1}+1$

$\Leftrightarrow a+b-1=\sqrt[3]{a^3+b^3-1}$

$\Leftrightarrow (a+b-1)^3=a^3+b^3-1$

$\Leftrightarrow (a+b)^3-3(a+b)^2+3(a+b)-1=a^3+b^3-1$

$\Leftrightarrow 3ab(a+b)-3(a+b)^2+3(a+b)=0$

$\Leftrightarrow ab(a+b)-(a+b)^2+(a+b)=0$

$\Leftrightarrow (a+b)(ab-a-b+1)=0$

$\Leftrightarrow (a+b)(a-1)(b-1)=0$

Nếu $a+b=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=-\sqrt[3]{x+2}$

$\Leftrightarrow x^2+3x-5=-(x+2)$

$\Leftrightarrow x^2+4x-3=0$

$\Leftrightarrow x=-2\pm \sqrt{7}$

Nếu $a-1=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=1$

$\Leftrightarrow x^2+3x-6=0$

$\Leftrightarrow x=\frac{-3\pm \sqrt{33}}{2}$

Nếu $b-1=0\Leftrightarrow \sqrt[3]{x+2}=1$

$\Leftrightarrow x=-1$

 

Bình luận (0)
TH
Xem chi tiết
H24
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Bình luận (3)
DH
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Bình luận (0)
AH
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Bình luận (0)
PT
Xem chi tiết
NT
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Bình luận (0)
H24
Xem chi tiết