Tìm m để \(\left|\dfrac{x^2+x+4}{x^2-mx+4}\right|\le2\)
Với mọi x thuộc R
Tìm m thỏa mãn
a) \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\) nghiệm đúng với mọi x thuộc R
b) \(x^2-2\left(m-1\right)x+4m+8\ge0\) nghiệm đúng với mọi x thuộc R
Câu 1: Tìm m để biểu thức sau luôn âm: (m-4)x2+ (m+1)x + 2m-1
Câu 2: Tìm m để bất phương trình sau có nghiệm đúng với mọi x:
a/ \(\dfrac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
b/ \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
GIÚP MÌNH VỚI Ạ!!!
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}m-4< 0\\\Delta=-7m^2+38m-15< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m>5\\m< \dfrac{3}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m< \dfrac{3}{7}\)
Tìm m để
\(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2\forall x\)
Mọi người giải giúp em ạ , cảm ơn
toán lớp 10 á
Điều kiện: \(x^2-mx+4\ne0,\forall x\inℝ\)
Vì \(x^2+x+4>0,\forall x\inℝ\)
nên \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2,\forall x\inℝ\)
\(\Leftrightarrow x^2+x+4\le2\left(x^2-mx+4\right)\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+4\ge0\)
\(\Leftrightarrow\frac{-5}{2}\le m\le\frac{-3}{2}\)
Cho \(\left(m-1\right)x^3+2\left(m-1\right)x^2+mx\). Tìm tất cả các giá trị của m để f'(x)<0 với mọi x thuộc R
\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)
- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)
- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
2.
\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow x^2-mx+1>0\forall x\)
\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)
Kết luận: \(-2< m< 2\)
tìm m để bpt dúng với mọi giá trị của x
\(\dfrac{x^2-8x+20}{mx^2+2\left(m+1\right)+9m+4}< 0\)
Cho hàm số f(x) = \(\dfrac{x^3}{3}-mx^2+\left(m+2\right)x+3\). Có tất cả các giá trị nguyên của tham số m để f'(x) ≥ 0 với mọi thuộc R.
Tìm tất cả các giá trị của tham số m để
\(\frac{x^2-4x-4}{x^2-2\left(m-1\right)x+16}\le2\) với mọi \(x\in R\)
cho y=\(\dfrac{1}{3}\left(m+1\right)x^3-\left(m+1\right)x^2-mx+1\) ddimnhj tham số m để y'>0 với mọi x thuộc n
\(y'=\left(m+1\right)x^2-2\left(m+1\right)x-m\)
\(m=-1\Rightarrow y'=1>0\forall x\in R\)
\(m\ne-1\Rightarrow y'>0\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\left(vl\right)\end{matrix}\right.\)
Vậy với m=-1 thì...