Những câu hỏi liên quan
NH
Xem chi tiết
NT
Xem chi tiết
NL
18 tháng 2 2022 lúc 23:23

a.

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4+x}-2}{4x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{4+x}-2\right)\left(\sqrt{4+x}+2\right)}{4x\left(\sqrt{4+x}+2\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x}{4x\left(\sqrt{4+x}+2\right)}=\lim\limits_{x\rightarrow0}\dfrac{1}{4\left(\sqrt{4+x}+2\right)}=\dfrac{1}{4\left(\sqrt{4+0}+2\right)}=\dfrac{1}{16}\)

b.

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x+7}-2\right)\left(\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}\)

\(=\dfrac{1}{\sqrt[3]{8^2}+2\sqrt[3]{8}+4}=\dfrac{1}{12}\)

Bình luận (2)
HH
Xem chi tiết
H9
26 tháng 9 2023 lúc 18:46

a) Hàm số trên nghịch biến trên R vì:

\(1< \sqrt{5}\Rightarrow1-\sqrt{5}< 0\) 

\(\Rightarrow\) hệ số \(a< 0\)

b) Khi \(x=1+\sqrt{5}\)

\(y=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1\)

\(y=1^2-\left(\sqrt{5}\right)^2-1\)

\(y=1-5-1\)

\(y=-5\)

c) Khi \(y=\sqrt{5}\) khi và chỉ khi:

\(\left(1-\sqrt{5}\right)x-1=\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1+\sqrt{5}\)

\(\Leftrightarrow x=\dfrac{1+\sqrt{5}}{1-\sqrt{5}}\)

\(\Leftrightarrow x=\dfrac{\left(1+\sqrt{5}\right)^2}{1-5}\)

\(\Leftrightarrow x=-\dfrac{3+\sqrt{5}}{2}\)

Bình luận (0)
NH
Xem chi tiết
NT
4 tháng 3 2022 lúc 19:11

a.

Ta có: MN//BC (gt)

Áp dụng định lý Ta-lét, ta có:

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\Leftrightarrow\dfrac{1,2}{3}=\dfrac{AN}{4}\)

\(\Leftrightarrow3AN=4,8\)

\(\Leftrightarrow AN=1,6cm\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{5}{7}\)

\(\Rightarrow CD=\dfrac{5}{7}.4=\dfrac{20}{7}cm\)

\(\Rightarrow BD=\dfrac{5}{7}.3=\dfrac{15}{7}cm\)

Bình luận (0)
MA
Xem chi tiết
H24
7 tháng 2 2022 lúc 10:53

Đăng 5 -6 câu từng lần ha bạn!

Bình luận (0)
DD
7 tháng 2 2022 lúc 11:01

\(1,7x-8=4x+7\)

\(\Leftrightarrow7x-8-4x=7\)

\(\Leftrightarrow7x-4x=7+8\)

\(\Leftrightarrow3x=15\)

\(\Rightarrow x=5\)

\(2,3-2x=3\left(x+1\right)-x-2\)

\(\Leftrightarrow3-2x=2x+1\)

\(\Leftrightarrow-2x+3=2x+1\)

\(\Leftrightarrow-2x-2x=1-3\)

\(\Leftrightarrow-4x=-2\)

\(\Rightarrow x=\dfrac{1}{2}\)

\(3,5\left(3x+2\right)=4x+1\)

\(\Leftrightarrow5.3x+5.2=4x+1\)

\(\Leftrightarrow15x+10=4x+1\)

\(\Leftrightarrow15x-4x=1-10\)

\(\Leftrightarrow11x=-9\)

\(\Rightarrow x=\dfrac{-9}{11}\)

Bình luận (0)
GD

Câu 6,7,9,10 cùng dạng là PT tích, anh làm 1 câu em làm các câu còn lại nhá

\(C.6:\\ \left(3x+2\right).\left(4x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=0\\4x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=-2\\4x=5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{5}{4}\end{matrix}\right.\\ \Rightarrow S=\left\{-\dfrac{2}{3};\dfrac{5}{4}\right\}\)

Câu 4,5,8 nhân ra chuyển về nên anh nghĩ em làm được

Câu 11,12,13,14 nó là mẫu số không có ẩn. Nên anh làm mẫu 2 câu trong số này nhé. Các câu khác em cứ dùng cách tương tự

\(C11\\ \dfrac{2x-1}{3}-x+2=\dfrac{3x+5}{4}\\ \Leftrightarrow\dfrac{4.\left(2x-1\right)}{12}-\dfrac{12x}{12}+\dfrac{24}{12}=\dfrac{3.\left(3x+5\right)}{12}\\\Leftrightarrow 8x-4-12x+24=9x+15\\ \Leftrightarrow8x-12x-9x=15-24+4\\ \Leftrightarrow-13x=-5\\ \Leftrightarrow x=\dfrac{-5}{-13}=\dfrac{5}{13}\\ \Rightarrow S=\left\{\dfrac{5}{13}\right\}\\ C14.\\ \dfrac{x-3}{6}+\dfrac{x+2}{4}=\dfrac{x-5}{3}+1\\ \Leftrightarrow\dfrac{2.\left(x-3\right)}{12}+\dfrac{3.\left(x+2\right)}{12}=\dfrac{4.\left(x-5\right)}{12}+\dfrac{12}{12}\\ \Leftrightarrow2x-6+3x+6=4x-20+12\\ \Leftrightarrow2x+3x-4x=-20+12+6-6\\ \Leftrightarrow x=-8\\ \Rightarrow S=\left\{8\right\}\)

Câu 15 nó có GTTĐ, anh sẽ làm như này em nha!

\(6-\left|2x-1\right|=3\\ \Leftrightarrow\left|2x-1\right|=6-3=3\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3+1=4\\2x=-3+1=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{2}=2\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\\ \Rightarrow S=\left\{-1;2\right\}\)

 

Bình luận (0)
NH
Xem chi tiết
NT
25 tháng 2 2022 lúc 13:04

a: \(A=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x+50}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x-50}{2xx\left(x-5\right)}\)

\(=\dfrac{x^2-10x-75}{2x\left(x-5\right)}\)

b: Ta có: |x-2|=3

nên x-2=3 hoặc x-2=-3

=>x=5(loại) hoặc x=-1(nhận)

Thay x=-1 vào A, ta được:

\(A=\dfrac{\left(-1\right)^2-10\cdot\left(-1\right)-75}{2\cdot\left(-1\right)\cdot\left(-1-5\right)}=\dfrac{1+20-75}{-2\cdot\left(-6\right)}=\dfrac{-54}{12}=\dfrac{-9}{2}\)

Bình luận (0)
NH
Xem chi tiết
NT
27 tháng 2 2022 lúc 23:04

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/9=CD/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{9}=\dfrac{CD}{15}=\dfrac{AD+CD}{9+15}=\dfrac{12}{24}=\dfrac{1}{2}\)

Do đó: AD=4,5(cm); CD=7,5(cm)

b: Xét ΔABC có DE//AB

nên DE/AB=CD/CA

=>DE/9=7,5/12

=>DE/9=5/8

hay DE=45/8(cm)

Bình luận (0)
NH
Xem chi tiết
NT
23 tháng 2 2022 lúc 19:19

a: BC=35cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/21=CD/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó: BD=15cm; CD=20cm

b: Xét ΔABC có DE//AB

nên DE/AB=CD/CB

=>DE/21=20/35=4/7

=>DE=12cm

Xét ΔABC có DE//AB

nên DE/AB=CE/CA

=>12/21=CE/28

=>CE/28=4/7

=>CE=16(cm)

Bình luận (0)
NH
Xem chi tiết
TH
25 tháng 2 2022 lúc 19:48

a) -Xét △AMB có: MD là tia phân giác của \(\widehat{AMB}\) (gt)

\(\Rightarrow\)\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\) (định lí đường phân giác trong tam giác)

-Xét △AMC có: ME là tia phân giác của \(\widehat{AMC}\) (gt)

\(\Rightarrow\)\(\dfrac{AM}{CM}=\dfrac{AE}{CE}\) (định lí đường phân giác trong tam giác)

Mà \(BM=CM\) (M là trung điểm BC).

\(\Rightarrow\)\(\dfrac{AM}{BM}=\dfrac{AE}{CE}\)

Mà ​\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\left(cmt\right)\) nên \(\dfrac{AD}{BD}=\dfrac{AE}{CE}\).​

-Xét △ABC có: \(\dfrac{AD}{BD}=\dfrac{AE}{CE}\) (cmt)

\(\Rightarrow\) DE//BC (định lí Ta-let đảo).

b) -Xét △ABM có: DG//BM.

\(\Rightarrow\dfrac{DG}{BM}=\dfrac{AG}{AM}\) (hệ quả định lí Ta-let).

--Xét △ACM có: EG//CM.

\(\Rightarrow\dfrac{EG}{CM}=\dfrac{AG}{AM}\)(hệ quả định lí Ta-let).

Mà \(\dfrac{DG}{BM}=\dfrac{AG}{AM}\) (cmt) ; \(BM=CM\) (M là trung điểm BC)

\(\Rightarrow\) \(DG=EG\) nên G là trung điểm DE.

*Giả sử G là trung điểm AM.

-Ta có: \(\widehat{AMB};\widehat{AMC}\) là 2 góc kề bù.

Mà MB, MC lần lượt là tia phân giác của ​\(\widehat{AMB},\widehat{AMC}\) (gt)​

\(\Rightarrow\widehat{DME}=90^0\) (định lí về góc được tạo bởi hai tia phân giác của 2 góc kề bù).

-Xét tứ giác AEMD có:

G là trung điểm của AM (gt)

G là trung điểm của DE (cmt)

\(\Rightarrow\) AEMD là hình bình hành mà \(\widehat{DME}=90^0\) (cmt)

\(\Rightarrow\) AEMD là hình chữ nhật nên \(\widehat{BAC}=90^0\).

-Vậy △ABC vuông tại A thì G là trung điểm AM.

c) -Ta có: \(AB^2+AC^2=12^2+16^2=400\left(cm\right)\)\(BC^2=400\left(cm\right)\)

\(\Rightarrow AB^2+AC^2=BC^2\)

-Xét △ABC có: \(AB^2+AC^2=BC^2\) (cmt)

\(\Rightarrow\)△ABC vuông tại A (định lí Py-ta-go đảo).

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.12.16=96\left(cm^2\right)\)

-Ta có: \(\dfrac{S_{ABC}}{S_{ACM}}=\dfrac{BC}{CM}\) (△ABM, △ABC có cùng đỉnh A và B,M,C thẳng hàng).

Mà \(BC=2CM\) (M là trung điểm BC).

\(\Rightarrow\dfrac{S_{ABC}}{S_{ACM}}=\dfrac{2CM}{CM}=2\)

\(\Rightarrow S_{ACM}=\dfrac{S_{ABC}}{2}=\dfrac{96}{2}=48\left(cm^2\right)\)

-Xét △ABC có: AN là tia phân giác của \(\widehat{BAC}\) (gt)

\(\Rightarrow\)\(\dfrac{AB}{AC}=\dfrac{BN}{CN}\) (định lí đường phân giác trong tam giác).

Mà \(\dfrac{BN}{CN}=\dfrac{S_{ABN}}{S_{ACN}}\)(△ABN, △ACN có cùng đỉnh A và B,N,C thẳng hàng).

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{S_{ABN}}{S_{ACN}}\)

\(\Rightarrow\dfrac{S_{ABN}}{S_{ACN}}=\dfrac{12}{16}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{S_{ABN}}{S_{ACN}}+1=\dfrac{3}{4}+1\)

\(\Rightarrow\dfrac{S_{ABC}}{S_{ACN}}=\dfrac{7}{4}\)

\(\Rightarrow S_{ACN}=\dfrac{4}{7}.S_{ABC}=\dfrac{4}{7}.96=\dfrac{384}{7}\left(cm^2\right)\)

-Vì \(AB< AC\left(12cm< 16cm\right)\) nên \(BN< CN\)

\(\Rightarrow S_{ANM}=S_{ACN}-S_{ACM}=\dfrac{384}{7}-48=\dfrac{48}{7}\left(cm^2\right)\)

 

 

 

 

 

 

 

Bình luận (0)