a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/9=CD/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{9}=\dfrac{CD}{15}=\dfrac{AD+CD}{9+15}=\dfrac{12}{24}=\dfrac{1}{2}\)
Do đó: AD=4,5(cm); CD=7,5(cm)
b: Xét ΔABC có DE//AB
nên DE/AB=CD/CA
=>DE/9=7,5/12
=>DE/9=5/8
hay DE=45/8(cm)
Đúng 0
Bình luận (0)