a) -Xét △AMB có: MD là tia phân giác của \(\widehat{AMB}\) (gt)
\(\Rightarrow\)\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\) (định lí đường phân giác trong tam giác)
-Xét △AMC có: ME là tia phân giác của \(\widehat{AMC}\) (gt)
\(\Rightarrow\)\(\dfrac{AM}{CM}=\dfrac{AE}{CE}\) (định lí đường phân giác trong tam giác)
Mà \(BM=CM\) (M là trung điểm BC).
\(\Rightarrow\)\(\dfrac{AM}{BM}=\dfrac{AE}{CE}\)
Mà \(\dfrac{AM}{BM}=\dfrac{AD}{BD}\left(cmt\right)\) nên \(\dfrac{AD}{BD}=\dfrac{AE}{CE}\).
-Xét △ABC có: \(\dfrac{AD}{BD}=\dfrac{AE}{CE}\) (cmt)
\(\Rightarrow\) DE//BC (định lí Ta-let đảo).
b) -Xét △ABM có: DG//BM.
\(\Rightarrow\dfrac{DG}{BM}=\dfrac{AG}{AM}\) (hệ quả định lí Ta-let).
--Xét △ACM có: EG//CM.
\(\Rightarrow\dfrac{EG}{CM}=\dfrac{AG}{AM}\)(hệ quả định lí Ta-let).
Mà \(\dfrac{DG}{BM}=\dfrac{AG}{AM}\) (cmt) ; \(BM=CM\) (M là trung điểm BC)
\(\Rightarrow\) \(DG=EG\) nên G là trung điểm DE.
*Giả sử G là trung điểm AM.
-Ta có: \(\widehat{AMB};\widehat{AMC}\) là 2 góc kề bù.
Mà MB, MC lần lượt là tia phân giác của \(\widehat{AMB},\widehat{AMC}\) (gt)
\(\Rightarrow\widehat{DME}=90^0\) (định lí về góc được tạo bởi hai tia phân giác của 2 góc kề bù).
-Xét tứ giác AEMD có:
G là trung điểm của AM (gt)
G là trung điểm của DE (cmt)
\(\Rightarrow\) AEMD là hình bình hành mà \(\widehat{DME}=90^0\) (cmt)
\(\Rightarrow\) AEMD là hình chữ nhật nên \(\widehat{BAC}=90^0\).
-Vậy △ABC vuông tại A thì G là trung điểm AM.
c) -Ta có: \(AB^2+AC^2=12^2+16^2=400\left(cm\right)\); \(BC^2=400\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=BC^2\)
-Xét △ABC có: \(AB^2+AC^2=BC^2\) (cmt)
\(\Rightarrow\)△ABC vuông tại A (định lí Py-ta-go đảo).
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.12.16=96\left(cm^2\right)\)
-Ta có: \(\dfrac{S_{ABC}}{S_{ACM}}=\dfrac{BC}{CM}\) (△ABM, △ABC có cùng đỉnh A và B,M,C thẳng hàng).
Mà \(BC=2CM\) (M là trung điểm BC).
\(\Rightarrow\dfrac{S_{ABC}}{S_{ACM}}=\dfrac{2CM}{CM}=2\)
\(\Rightarrow S_{ACM}=\dfrac{S_{ABC}}{2}=\dfrac{96}{2}=48\left(cm^2\right)\)
-Xét △ABC có: AN là tia phân giác của \(\widehat{BAC}\) (gt)
\(\Rightarrow\)\(\dfrac{AB}{AC}=\dfrac{BN}{CN}\) (định lí đường phân giác trong tam giác).
Mà \(\dfrac{BN}{CN}=\dfrac{S_{ABN}}{S_{ACN}}\)(△ABN, △ACN có cùng đỉnh A và B,N,C thẳng hàng).
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{S_{ABN}}{S_{ACN}}\)
\(\Rightarrow\dfrac{S_{ABN}}{S_{ACN}}=\dfrac{12}{16}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{S_{ABN}}{S_{ACN}}+1=\dfrac{3}{4}+1\)
\(\Rightarrow\dfrac{S_{ABC}}{S_{ACN}}=\dfrac{7}{4}\)
\(\Rightarrow S_{ACN}=\dfrac{4}{7}.S_{ABC}=\dfrac{4}{7}.96=\dfrac{384}{7}\left(cm^2\right)\)
-Vì \(AB< AC\left(12cm< 16cm\right)\) nên \(BN< CN\)
\(\Rightarrow S_{ANM}=S_{ACN}-S_{ACM}=\dfrac{384}{7}-48=\dfrac{48}{7}\left(cm^2\right)\)