Những câu hỏi liên quan
NT
Xem chi tiết
NB
Xem chi tiết

Giả sử tồn tại các số nguyên dương x,y mà :

(x+y)(x-y)=2022 (1)

Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)

Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích  (x+y)(x-y)  chia hết cho 4 mà 2022 lại không chia hết cho 4                 suy ra không tồn tại 2 số nguyên dương x và y

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
BB
Xem chi tiết
NM
10 tháng 10 2021 lúc 15:37

Giả sử \(x+\sqrt{2}\) hữu tỉ thì \(x=-\sqrt{2}\) do \(\sqrt{2}\) vô tỉ

Do đó \(x\) vô tỉ

Vậy \(x^3+\sqrt{2}\) vô tỉ

Vậy ko tồn tại số thực x tm đề

Hmm cái này ko chắc :))

 

Bình luận (0)
PA
Xem chi tiết
H24
Xem chi tiết
H24
17 tháng 1 2017 lúc 18:02

việc đầu tiên phân tích vế phải ra thừa số nguyên tố

Bình luận (0)
H24
17 tháng 1 2017 lúc 18:03

không vì xy và (x+y) luôn có một số chẵn

Bình luận (0)
H24
18 tháng 1 2017 lúc 7:10

thay đổi phương án trong chưa đầy 1 s thế thì ai theo được.

Bình luận (0)
TB
Xem chi tiết
FB
Xem chi tiết
TQ
Xem chi tiết
H9
23 tháng 10 2023 lúc 17:05

Ta có:

\(x^2+4y^2+z^2-4x+4y-8z+24=0\)

\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)

 \(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)

Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.

Bình luận (0)
PT
Xem chi tiết