Cho tam giác ABC cân tại a , bh vuông góc với ac biết ah=8cm, hc =3cm tính bc
Cho tam giác ABC cân tại a , bh vuông góc với ac biết ah=8cm, hc =3cm tính bc
Ta có: AC=AH+HC(H nằm giữa A và C)
nên AC=8+3=11(cm)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(hai cạnh bên)
mà AC=11cm(cmt)
nên AB=11cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=11^2-8^2=57\)
hay \(BH=\sqrt{57}cm\)
Áp dụng định lí Pytago vào ΔBHC vuông tại H, ta được:
\(BC^2=BH^2+HC^2\)
\(\Leftrightarrow BC^2=\left(\sqrt{57}\right)^2+3^2=66\)
hay \(BC=\sqrt{66}cm\)
Vậy: \(BC=\sqrt{66}cm\)
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC. Biết AH=7cm, HC=3cm. Tính BC
\(\Rightarrow AC=10cm\)
\(\Rightarrow AB=10cm\) ( AB = AC )
Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+HB^2\)
\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{10^2-7^2}=\sqrt{51}\)
Áp dụng định lí pitago vào tam giác vuông BHC
\(BC^2=HC^2+HB^2\)
\(\Rightarrow BC=\sqrt{3^2+\sqrt{51}^2}=2\sqrt{15}\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông cân ở A, biết AB=6cm, AC=8cm, kẻ AH vuông góc với BC tại H. Tính AH, BH và HC
Bài 5: Tính độ dài cạnh đáy BC của tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần AH = 8cm, HC = 3cm.
Bài 6: Cho tam giác ABC vuông tại A, AH vuông góc với BC tại H, M là trung điểm của BC. Biết AH = 40, AM = 41. Tính tỉ số độ dài 2 cạnh góc vuông AC và AB.
a) bạn tự vẽ hình nhé
sau khi kẻ, ta có AC=AH+HC=11
mà tam giác ABH vuông tại H
=> theo định lý Pytago => AH^2+BH^2=AB^2
=>BH=căn bậc 2 của 57
cũng theo định lý Pytago
=>BC^2=HC^2+BH^2
=>BC=căn bậc 2 của 66
b) bạn tự vẽ hình tiếp nha
ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A
=>AM=MB=MC
theo định lý Pytago =>do tam giác HAM vuông tại H
=>HM^2+HA^2=AM^2
=>HM=9 => HB=MB-MH=32
=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624
tương tự tính được AC=căn bậc 2 của 4100
=> AC/AB=5/4
CHÚC BẠN HỌC TỐT!!!
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC. Sao cho AH = 3cm, HC = 2cm. Tính BC
tam giác ABC cân tại A -> AB=AC=AH+HC=5
Tam giác ABH vuông tại H.
Theo pitago: AB2=AH2+BH2 <=> BH2=AB2-AH2=52-32=16
=>BH=4
Tam giác BCH vuông tại H:
theo pitago: BC2=BH2+CH2=42+22=16+4=20
BC=\(\sqrt{20}\)
Nếu thấy hay hãy đăng ký trang youtube của mình nha: https://www.youtube.com/channel/UCdMJRiuo_35tKETQtnAYOBQ?view_as=subscriber
Cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC) a. Chứng minh : BH = HC và góc BAH = góc CAH b. Biết AB = AC = 5cm; BC = 8cm. Tính AH
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
1Cho tam giác ABC cân tại A. Kẻ BH vuông với AC biết AH= 6cm HC= 3cm. Tính BC
2 Cho tam giác ABC vuông tại A có góc B=60độ CMR AB=1/2BC
Lê Xuân Trường
1-Xét tam giác ABH và tam giác ACH có
Góc AHB = Góc AHC = 90 độ
AC = AB (Do tam giác ABC cân tại A)
Góc ABH = Góc ACH(Do tam giác ABC cân tại A)
Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )
Suy ra BH = CH =3 cm (2 cạnh tương ứng )
2 . Tui không biết làm thông cảm nhe !
Cho tam giác ABC cân ở A. Kẻ BH vuông góc với AC. Biết AH = 3cm, HC = 2cm. Tính độ dài cạnh BC.