Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

H24

Cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC) a. Chứng minh : BH = HC và góc BAH = góc CAH b. Biết AB = AC = 5cm; BC = 8cm. Tính AH

MH
17 tháng 4 2022 lúc 9:50

a) Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

\(AB=AC\) (Do tam giác ABC cân tại A)

\(AH\) chung

\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)

b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)

Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)

\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)

Bình luận (1)

Các câu hỏi tương tự
DV
Xem chi tiết
TH
Xem chi tiết
QT
Xem chi tiết
TK
Xem chi tiết
TN
Xem chi tiết
KD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết