Những câu hỏi liên quan
DQ
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 3 2018 lúc 3:47

a)n = 1 ⇒ 31 = 3 < 8 = 8.1

n = 2 ⇒ 32 = 9 < 16 = 8.2

n = 3 ⇒ 33 = 27 > 24 = 8.3

n = 4 ⇒ 34 = 81 > 32 = 8.4

n = 5 ⇒ 35 = 243 > 40 = 8.5

b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3

- n = 3, bất đẳng thức đúng

- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:

3k > 8k

Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:

3(k + 1) > 8(k + 1)

Thật vậy, từ giả thiết quy nạp ta có:

3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k

k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8

Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)

Vậy bất đẳng thức đúng với mọi n ≥ 3

Bình luận (0)
DT
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết
NL
19 tháng 11 2019 lúc 1:18

Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)

Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)

Thật vậy:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)

\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)

Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)

\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
ST
Xem chi tiết
NT
7 tháng 7 2022 lúc 19:59

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left(n-1\right)\left(2n-1\right)\)

TH1: n=3k

\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)

mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)

nên A chia hết cho 6

TH2: n=3k+1

\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)

\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)

=>A chia hết cho 6

TH3: n=3k+2

\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)

\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)

 

Bình luận (0)
H24
Xem chi tiết
NL
4 tháng 10 2021 lúc 22:29

\(n=1\Rightarrow1^1\ge1!\) đúng

Giả sử đúng với \(n=k\) hay \(k^k\ge k!\) 

Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)

Ta có:

\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)

Bình luận (1)
VL
Xem chi tiết
DL
26 tháng 12 2015 lúc 21:49

chả có j mà ngồi cười như thật!

Bình luận (0)
NK
26 tháng 12 2015 lúc 21:59

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31

Bình luận (0)
NA
15 tháng 3 2017 lúc 21:54

bác Khánh làm hay thật 

Bình luận (0)
HP
Xem chi tiết
OO
1 tháng 8 2016 lúc 10:04
Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^

Bình luận (0)