cho \(0< m\ne1\). gọi (a;b) là tập hợp các giá trị của m để bất phương trình \(\log_m\left(1-8m^{-x}\right)\ge2\left(1-x\right)\) có hữu hạn nghiệm nguyên. tính b - a
Cho biểu thức \(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a/ Rút gọn M với \(a>0,a\ne1\)
b/ So sánh M với 1
c/ Tính giá trị M khi \(a=3-2\sqrt{2}\)
a) \(M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=1-\dfrac{1}{\sqrt{a}}< 1\)
c) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{\sqrt{3-2\sqrt{2}}-1}{\sqrt{3-2\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}\)
\(a,M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,M=1-\dfrac{1}{\sqrt{a}}< 1\\ c,a=3-2\sqrt{2}\Leftrightarrow\sqrt{a}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\\ \Leftrightarrow M=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}=\dfrac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\)
Cho \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\); \(B=\dfrac{\sqrt{x}+1}{x-1}\) với x>0; \(x\ne1\).
a) Tính P=A:B
b) Tìm giá trị của m dể tồn tại x sao cho \(P\sqrt{x}=m+\sqrt{x}\)
\(a,P=A:B=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m+\sqrt{x}\\ \Leftrightarrow x-1=m+\sqrt{x}\\ \Leftrightarrow x-\sqrt{x}-m-1=0\)
Để tồn tại x thì PT phải có nghiệm hay \(\Delta=1-4\left(-m-1\right)\ge0\)
\(\Leftrightarrow4m+5\ge0\\ \Leftrightarrow m\ge-\dfrac{5}{4}\)
Cho A = (1/(sqrt(x) - 1) + (sqrt(x))/(x - 1)) * (x - sqrt(x))/(2sqrt(x) + 1) * v x > 0 x ne1 . 8 1. Rút gọn biểu thức A; 2. Tính giá trị của A khi x = 9
3. Tìm m để phương trình A = m có nghiệm.1: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\cdot\left(\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
2: Thay x=9 vào A, ta được:
\(A=\dfrac{3}{3+1}=\dfrac{3}{4}\)
Cho: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\)
\(B=\dfrac{\sqrt{x}+1}{x-1}\) với x>0, \(x\ne1\)
a) Tính: P=A:B
b) Tìm giá trị của m để tồn tại x sao cho \(P\sqrt{x}=m+\sqrt{x}\)
a) \(P=A:B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
Rút gọn:
A= (\(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\)). \(\frac{\sqrt{x}+1}{\sqrt{x}}\)với x>0 và x\(\ne1\)
B= (\(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\)) : \(\frac{\sqrt{x}+1}{x^2-x}\)với x>0 và x\(\ne1\)
C= ( \(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\)) : \(\frac{1}{\sqrt{a}.\left(\sqrt{a}-1\right)}\)với a>0 và a \(\ne1\)
D= (\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : \(\frac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)với x>0 và x\(\ne1\)
E= ( \(\frac{a\sqrt{a}+1}{a-\sqrt{a}-2}+\frac{a}{2\sqrt{a}-a}\)) :\(\frac{1-\sqrt{a}}{2-\sqrt{a}}\)với a>0, a\(\ne4\),a\(\ne1\) F= ( \(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\)): (\(1+\frac{\sqrt{a}}{a+1}\)) với a>0 giúp mình vs mình tick cho nhiều lắm ạ!!! Mình đang cần gấp mn ơi!?!Với điều kiện: \(x>0;x\ne4;x\ne1\): Cho \(P=\sqrt{x}-1\). Tìm m để có x thoả mãn \(P=mx\sqrt{x}-2mx+1\)
\(\sqrt{x}-1=mx\sqrt{x}-2mx+1\)
\(\Leftrightarrow mx\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(mx-1\right)=0\)
\(\Leftrightarrow mx-1=0\) (do \(x\ne4\Rightarrow\sqrt{x}-2\ne0\))
Để có x thỏa mãn bài toán
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\\dfrac{1}{m}\ne1\\\dfrac{1}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m\ne1\end{matrix}\right.\)
\(M=\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)\(v\text{ới }a\ge0;a\ne1\)
a) Rút gọn M.
b) Tìm a sao cho M>0.
Lời giải:
a)
\(M=\frac{a+1+\sqrt{a}}{a+1}:\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{(\sqrt{a}-1)(a+1)}\right]=\frac{a+1+\sqrt{a}}{a+1}:\frac{a+1-2\sqrt{a}}{(\sqrt{a}-1)(a+1)}\)
\(=\frac{a+1+\sqrt{a}}{a+1}:\frac{(\sqrt{a}-1)^2}{(\sqrt{a}-1)(a+1)}=\frac{a+1+\sqrt{a}}{a+1}:\frac{\sqrt{a}-1}{a+1}=\frac{a+1+\sqrt{a}}{a+1}.\frac{a+1}{\sqrt{a}-1}\)
\(=\frac{a+1+\sqrt{a}}{\sqrt{a}-1}\)
b) Để $M>0\Leftrightarrow \frac{a+1+\sqrt{a}}{\sqrt{a}-1}>0$
$\Leftrightarrow \sqrt{a}-1>0$ (do $a+1+\sqrt{a}>0$ với mọi $a\in$ ĐKXĐ)
$\Leftrightarrow a>1$
Vậy $a>1$ thì $M>0$
Cho: \(A=\dfrac{1}{\sqrt{x}}\) (ĐKXĐ: x>0, \(x\ne1\)). Hãy chứng tỏ rằng: \(B=\left(x-\sqrt{x}+1\right).A>1\)
\(B=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1\ge2\sqrt{\dfrac{\sqrt{x}}{\sqrt{x}}}-1=1\)
Dấu "=" không xảy ra (do \(x\ne1\) ) nên \(B>1\)
Cho: \(A=\dfrac{3\sqrt{x}}{x+\sqrt{x}+1}\) (ĐKXĐ: x>0; \(x\ne1\)). Tìm x để A đạt giá trị nhỏ nhất
Với \(x>0;x\ne1\) thì biểu thức này ko tồn tại cả GTNN lẫn GTLN