Cho (d1):y=(m+1)x+2
(d2):y=(\(m^2\) +4m+3)x+3
Tìm m để:
a) (d1)\(\Omega\)(d2)
b) (d1) // (d2)
Cho 2 đường thẳng (d1):
y = m(x+2);(d2):y=(2m-3)x+2 Tìm m để:
a) (d1) và (d2) song song với nhau.
b) (d1) và (d2) trùng với nhau.
c) (d1) và (d2) vuông góc với nhau.
a) \(\left(d_1\right):y=mx+2m\)
\((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Rightarrow m=3\)
b) \(\left(d_1\right)\equiv\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Rightarrow\) không có m thỏa
c) \(\left(d_1\right)\bot\left(d_2\right)\Rightarrow m.\left(2m-3\right)=-1\Rightarrow2m^2-3m+1=0\)
\(\Rightarrow\left(m-1\right)\left(2m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: (d1): y=m(x+2)
nên y=mx+2m
a) Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2m=-3\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Leftrightarrow m=3\)
b) Để (d1) trùng với (d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Cho d1 : y = 2x – 3
d2 : y = -x + 9
d3 : y = (m – 1)x + m – 3
Tìm m để d1, d2 và d3 đồng quy
Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:
\(2x-3=-x+9\)
\(\Leftrightarrow3x=12\)
hay x=4
Thay x=4 vào \(\left(d2\right)\), ta được:
\(y=-4+9=5\)
Thay x=4 và y=5 vào \(\left(d3\right)\), ta được:
\(4\left(m-1\right)+m-3=5\)
\(\Leftrightarrow4m-4+m-3=5\)
\(\Leftrightarrow5m=12\)
hay \(m=\dfrac{12}{5}\)
Cho d1:y=(2m-1)x+m-1
d2:y=x-3
Tìm m để giao d1;d2 thuộc góc phần tư thứ 1
Phương trình hoành độ giao điểm:
`(2m-1)x+m-1=x-3`
`<=>(2m-2)x+m+2=0`
`<=>x=-(m+2)/(2m-2)`
`d_1` giao `d_2` tại góc phần tư thứ 1 `<=> x=-(m+2)/(2m-2)>0 <=>-2<m<1`
Vậy `-2<m<1`.
Tìm m để
a) đường thẳng (d1): y= (2-m2)x- m-5 song song với (d2): y= -2x +2m +1
b) (d1): y= (2m+1)x-(2m+3) song song với (d2): y= m(x+1)-x
c) (d1):y= m2x+ 1-4m giao với (d2): y= -1/4x+1 tại 1 điểm nằm trên trục hoành
(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)
\(\Rightarrow m=\pm2.\)
(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).
\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow m=-2.\)
(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)
\(m^2x+1-4m=-\dfrac{1}{4}x+1\)
\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).
Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).
Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\).
cho 2 hàm số bậc nhất
(d1) y=\(\left(m-3\right)x+m^2-6\)
(d2) y=\(-2mx+3\)
xác định m để:(d1) \(//\) (d2);
(d1) cắt (d2) nhau tại 1 diểm trên trục tung,
(d1)\(\equiv\)(d2)
\(\left(d_1\right)\text{//}\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne\pm3\end{matrix}\right.\Leftrightarrow m=1\\ \left(d_1\right)\cap\left(d_2\right)\text{ tại 1 điểm trên Oy}\\ \Leftrightarrow\left\{{}\begin{matrix}y=\left(m-3\right)\cdot0+m^2-6\\y=-2m\cdot0+3=3\end{matrix}\right.\Leftrightarrow m^2-6=3\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\\ \left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6=3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
cho 2 đường thẳng
d1: y=(4m+8) x-2n+ 3
d2: y=(3-m) x+x-6
a, tìm m,n để(d1)\(\equiv\) (d2)
b,tìm m để d1 song song với y=4x-3
c,tìm m để d2 ⊥ y=-3x + 6
d, tìm m,n để d1,d2 cắt nhau tại 1 điểm trên trục tung
Câu a : \(\left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}4m+8=3-m\\2n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\n=-\dfrac{9}{2}\end{matrix}\right.\)
Câu b : \(\left(d_1\right)//4x-3\Leftrightarrow4m+8=4\Leftrightarrow m=-1\)
Câu c : \(\left(d_2\right)\perp4x-3\Leftrightarrow\left(3-m\right).4=-1\Leftrightarrow m=\dfrac{13}{4}\)
Câu d : \(\left(d_1\right)c\left(d_2\right)tạiOy\Leftrightarrow\left\{{}\begin{matrix}4m+8\ne3-m\\2n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\n=-\dfrac{9}{2}\end{matrix}\right.\)
Cho hai đường thẳng: (d1) : y = (2 + m)x - 4
và (d2) : y = (3m - 2)x - m +1
a) Tìm m để (d1) // (d2)
b) Tìm m để (d1) cắt (d2) tại một điểm trên trục tung
c) Tìm m để (d1) cắt (d2) tạo một điểm có hoành độ bằng -1
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2
Cho 2 hàm số bậc nhất có đồ thị là (D1) và (D2)
(D1) : y = (m+1)x - 3
(D2) : y = -2x - 5
a) Tìm m để (D1) cắt (D2) tại điểm thuộc trục hoành.
b) Tìm m để (D1), (D2), (D3) : y = -x+2 đồng quy
Cho 2 đường thẳng:
(d1): (4m-3)x+(m-2)y=m+1 (m khác 2)
(d2): -2x+3y=5
Xác định m để (d1) vuông góc với (d2)