MB

Tìm m để

a) đường thẳng (d1): y= (2-m2)x- m-5 song song với (d2): y= -2x +2m +1

b) (d1): y= (2m+1)x-(2m+3) song song với (d2): y= m(x+1)-x

c) (d1):y= m2x+ 1-4m giao với (d2): y= -1/4x+1 tại 1 điểm nằm trên trục hoành 

TM
16 tháng 10 2023 lúc 21:12

(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)

\(\Rightarrow m=\pm2.\)

(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).

\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)

\(\Rightarrow m=-2.\)

(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)

\(m^2x+1-4m=-\dfrac{1}{4}x+1\)

\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).

Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).

Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)

\(\Leftrightarrow m=\dfrac{1}{2}\).

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
H24
Xem chi tiết
MP
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
GH
Xem chi tiết
KT
Xem chi tiết
LM
Xem chi tiết
YP
Xem chi tiết