Giải hệ phương trình \(\left\{{}\begin{matrix}6x^2-y-xy^2=0\\5x^2-x^2y^2-1=0\end{matrix}\right.\)
Giải các hệ phương trình sau :
a, \(\left\{{}\begin{matrix}x^2+xy=y^2+1\\3x+y=y^2+3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2-y^2=4x-2y-3\\x^2+y^2=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}2\left(y+z\right)=yz\\xy+yz+zx=108\\xyz=180\end{matrix}\right.\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^2-xy+y-7=0\\x^2+xy-2y=4\left(x-1\right)\end{matrix}\right.\)
Biến đổi pt dưới:
\(x^2-4x+4+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)
Thay vào pt đầu giải bt
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2-xy+y-7=0\\x^2+xy-2y=4\left(x-1\right)\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}x^2+xy+y^2+4x+3y=0\\xy+x+2y=0\end{matrix}\right.\)
Giải hệ phương trình:\(\left\{{}\begin{matrix}x^3+xy^2+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+2y^2+xy+2x-4=0\end{matrix}\right.\)
giải hệ phương trình
a, \(\left\{{}\begin{matrix}2y^2+xy-x^2=0\\x^2-xy-y^2+3x+7y+3=0\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}1+x^3y^3=19y^2\\y\left(1+xy\right)=-6x^2\end{matrix}\right.\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
b.
ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)
Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:
\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)
\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)
Thay xuống pt dưới:
\(6y+y=14\Rightarrow y=2\)
\(\Rightarrow x=4\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?