Những câu hỏi liên quan
TY
Xem chi tiết
TY
21 tháng 3 2022 lúc 10:42

;-;!!!

Bình luận (0)
TY
Xem chi tiết
BH
22 tháng 3 2022 lúc 17:25

để pt trên có 2 nghiệm pb thì \(\Delta'>0\)

<=> \(m^2+6m+9-4m-12>0\)

<=>\(m^2+2m-3>0\)

<=>\(\left(m-1\right)\left(m+3\right)>0\)

<=>\(\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

cho \(x_1,x_2\)  là 2 nghiệm của pt và \(x_1< x_2\)

cần chứng minh \(x_1>-1\)

<=>\(-m-3-\sqrt{m^2+2m-3}>-1\)

<=>\(\sqrt{m^2+2m-3}>m+2\)

<=>\(\left[{}\begin{matrix}m^2+2m-3>m^2+4m+4\\m^2+2m-3>-m^2-4m-4\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}2m+7< 0\\2m^2+6m+1>0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}m< \dfrac{-7}{2}\\m>\dfrac{-3+\sqrt{7}}{2}\\m< \dfrac{-3-\sqrt{7}}{2}\end{matrix}\right.\)

so với điều kiện ở đè bài =>\(m< \dfrac{-7}{2}\)thỏa yêu câu đề bài 

KL: để pt có 2 nghiệm pb đều lớn hơn -1 thì \(m< \dfrac{-7}{2}\)

 

 

Bình luận (0)
PA
Xem chi tiết
NL
21 tháng 3 2022 lúc 13:16

\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)

Pt có 2 nghiệm lớn hơn -1 khi: \(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\dfrac{7}{2}< m< -2\)

Kết hợp điều kiện ban đầu \(\Rightarrow-\dfrac{7}{2}< m< -3\)

Bình luận (0)
TY
Xem chi tiết
TY
21 tháng 3 2022 lúc 10:35

:((!

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
MH
12 tháng 10 2023 lúc 20:39

\(\Delta=\left(m-1\right)^2-4.\left(-m\right)\)

\(=\left(m^2-2m+1\right)+4m=\left(m+1\right)^2\)

Để pt có 2 nghiệm phân biệt => \(m\ne-1\)

\(\left[{}\begin{matrix}x_1=\dfrac{m-1+m+1}{2}=m\\x_2=\dfrac{m-1-m-1}{2}=-1\end{matrix}\right.\)

Để pt có 2 nghiệm phân biệt bé 1

\(\Rightarrow m< 1\)

Bình luận (0)
H24
12 tháng 10 2023 lúc 20:43

Ta có: `{(x_1 < 1),(x_2 < 1):}=>(x_1 -1)(x_2 -1) > 0`

Phương trình có `2` nghiệm phân biệt

   `=>\Delta > 0`

`<=>[-(m-1)]^2+4m > 0`

`<=>m^2-2m+4m+1 > 0`

`<=>m^2+2m+1 > 0<=>(m+1)^2 > 0`

    `=>m+1 ne 0<=>m ne -1`

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=m-1),(x_1.x_2=c/a=-m):}`

Ta có: `(x_1 -1)(x_2 -1) > 0`

`<=>x_1 .x_2-(x_1 +x_2)+1 > 0`

`<=>-m-m+1+1 > 0`

`<=>m < 1`

  Mà `m ne -1`

  `=>m < 1,m ne -1`.

Bình luận (0)
NV
Xem chi tiết
TG
28 tháng 11 2021 lúc 21:38

undefined

Bình luận (5)
MN
Xem chi tiết
QB
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Bình luận (0)
NT
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Bình luận (0)
NH
Xem chi tiết
NT
22 tháng 12 2021 lúc 10:57

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

Bình luận (0)