TY

Xác định m để phương trình x^2  2(m+3)x+4m+12=0 có hai nghiệm phân biệt lớn -1.

BH
22 tháng 3 2022 lúc 17:25

để pt trên có 2 nghiệm pb thì \(\Delta'>0\)

<=> \(m^2+6m+9-4m-12>0\)

<=>\(m^2+2m-3>0\)

<=>\(\left(m-1\right)\left(m+3\right)>0\)

<=>\(\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

cho \(x_1,x_2\)  là 2 nghiệm của pt và \(x_1< x_2\)

cần chứng minh \(x_1>-1\)

<=>\(-m-3-\sqrt{m^2+2m-3}>-1\)

<=>\(\sqrt{m^2+2m-3}>m+2\)

<=>\(\left[{}\begin{matrix}m^2+2m-3>m^2+4m+4\\m^2+2m-3>-m^2-4m-4\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}2m+7< 0\\2m^2+6m+1>0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}m< \dfrac{-7}{2}\\m>\dfrac{-3+\sqrt{7}}{2}\\m< \dfrac{-3-\sqrt{7}}{2}\end{matrix}\right.\)

so với điều kiện ở đè bài =>\(m< \dfrac{-7}{2}\)thỏa yêu câu đề bài 

KL: để pt có 2 nghiệm pb đều lớn hơn -1 thì \(m< \dfrac{-7}{2}\)

 

 

Bình luận (0)

Các câu hỏi tương tự
TY
Xem chi tiết
PA
Xem chi tiết
TY
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
NH
Xem chi tiết
LM
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết