H24

Cho phương trình x^2 -(m-1)x-m=0 Xác định giá trị của m để phương trình có 2 nghiệm phân biệt bé hơn 1

MH
12 tháng 10 2023 lúc 20:39

\(\Delta=\left(m-1\right)^2-4.\left(-m\right)\)

\(=\left(m^2-2m+1\right)+4m=\left(m+1\right)^2\)

Để pt có 2 nghiệm phân biệt => \(m\ne-1\)

\(\left[{}\begin{matrix}x_1=\dfrac{m-1+m+1}{2}=m\\x_2=\dfrac{m-1-m-1}{2}=-1\end{matrix}\right.\)

Để pt có 2 nghiệm phân biệt bé 1

\(\Rightarrow m< 1\)

Bình luận (0)
H24
12 tháng 10 2023 lúc 20:43

Ta có: `{(x_1 < 1),(x_2 < 1):}=>(x_1 -1)(x_2 -1) > 0`

Phương trình có `2` nghiệm phân biệt

   `=>\Delta > 0`

`<=>[-(m-1)]^2+4m > 0`

`<=>m^2-2m+4m+1 > 0`

`<=>m^2+2m+1 > 0<=>(m+1)^2 > 0`

    `=>m+1 ne 0<=>m ne -1`

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=m-1),(x_1.x_2=c/a=-m):}`

Ta có: `(x_1 -1)(x_2 -1) > 0`

`<=>x_1 .x_2-(x_1 +x_2)+1 > 0`

`<=>-m-m+1+1 > 0`

`<=>m < 1`

  Mà `m ne -1`

  `=>m < 1,m ne -1`.

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
LP
Xem chi tiết
ND
Xem chi tiết
NS
Xem chi tiết
9D
Xem chi tiết
PB
Xem chi tiết
KN
Xem chi tiết
PN
Xem chi tiết
LH
Xem chi tiết