cho phân số : B = a+15/a+3
tìm a<20 để B tối giản biết a thuộc N
Cho a,b,c là số thực ko âm,a+b+c=3
Tìm max của A=ab^2+bc^2+ca^2
Cho các số thực không âm a. b. c thỏa mãn a + b + c = 3
TÌm GTLN của P = \(a\sqrt{b}+b\sqrt{c}+c\sqrt{a}-\sqrt{abc}\)
\(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\Rightarrow\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=3\\0\le x;y;z\le\sqrt{3}\end{matrix}\right.\)
\(P=x^2y+y^2z+z^2x-xyz\)
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Leftrightarrow x^2+yz\le xy+xz\)
\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)
\(\Rightarrow P\le xy^2+z^2x+xyz-xyz=x\left(y^2+z^2\right)=x\left(3-x^2\right)\)
\(\Rightarrow P\le2-\left(x^3-3x+2\right)=2-\left(x-1\right)^2\left(x+2\right)\le2\)
\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(1;0;2\right)\) và một vài hoán vị
Cho a; b; c là các số thực dương thỏa mãn: a+b+c=3
Tìm Min của: \(A=\dfrac{a}{a+2b^3}+\dfrac{b}{b+2c^3}+\dfrac{c}{c+2a^3}\)
\(\dfrac{a}{a+2b^3}=a-\dfrac{2ab^3}{a+b^3+b^3}\ge a-\dfrac{2ab^3}{3\sqrt[3]{ab^6}}=a-\dfrac{2}{3}.b\sqrt[3]{a^2}\ge a-\dfrac{2}{9}b\left(a+a+1\right)\)
\(\Rightarrow\dfrac{a}{a+2b^3}\ge a-\dfrac{2}{9}\left(2ab+b\right)\)
Tương tự: \(\dfrac{b}{b+2c^3}\ge b-\dfrac{2}{9}\left(2bc+c\right)\) ; \(\dfrac{c}{c+2a^3}\ge c-\dfrac{2}{9}\left(2ac+a\right)\)
Cộng vế:
\(A\ge a+b+c-\dfrac{2}{9}\left(2ab+2bc+2ca+a+b+c\right)=3-\dfrac{2}{9}\left[2\left(ab+bc+ca\right)+3\right]\)
\(A\ge3-\dfrac{2}{9}\left[\dfrac{2}{3}\left(a+b+c\right)^2+3\right]=1\)
cho a,b là các số dương thỏa mãn: a+b+c=3
Tìm GTNN của M=\(\sqrt{a^2+ab+b^2}\)+\(\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
Tương tự, ta có:
\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a b c là các số thực thỏa mãn a,b ≥0 0≤ c ≤ 1 và a^2 +b^2 +c^2 =3
Tìm min max P= ab + bc +ca +3(a+b+c)
1.phân tích đa thức thành nhân tử x^2-11x+30
2. cho biểu thức: A=x^2-x+1/x-3tìm giá trị nguyên của biến x để biểu thức A có giá trị là số nguyên
. a) Cho hàm số y = f(x) = 2x2 + 5x – 3. Tính f(1); f(0); f(1,5).
b) Cho hàm số: y = f(x) = ax - 3
Tìm a biết f(3) = 9; f(5) = 11; f(-1) = 6.
a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)
\(f\left(0\right)=0+0-3=-3\)
\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)
b)\(f\left(3\right)=3a-3=9=>>3a=12=>a=4\)
\(f\left(5\right)=5a-3=11=>5a=14=>a=\dfrac{14}{5}\)
\(f\left(-1\right)=-a-3=6=>-a=9=>a=-9\)
cho đa thức A(x)=x3- x2 + ax+ b =-2
và B(x)= x2-2x+3
tìm a,b để A(x) : B(x) dư 6
A(x)=-2 rồi thì A(x):B(x) dư 6 sao được bạn? Bạn xem lại đề.
Cho a,b,c>0 thỏa a + b + c = 3
Tìm GTNN của biểu thức C = \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)
Mình nghĩ đề bị sai bạn ạ, bạn xem lại giùm mình nhé
a) Cho hàm số y=f(x)=2x2+5x-3. Tính f(1);f(0);f(1,5).
b) Cho hàm số;y=f(x)=ax-3
Tìm a biết: f(3)=9; f(5)=11; f(-1)=6
Giups mink với mai mink thi rồi !!!!!!!!!!!
`a)`
`@f(1)=2.1^2+5.1-3=2.1+5-3=2+5-3=4`
`@f(0)=2.0^2+5.0-3=-3`
`@f(1,5)=2.(1,5)^2+5.1,5-3=4,5+7,5-3=9`
_____________________________________________________
`b)`
`***f(3)=9`
`=>3a-3=9`
`=>3a=12=>a=4`
`***f(5)=11`
`=>5a-3=11`
`=>5a=14=>a=14/5`
`***f(-1)=6`
`=>-a-3=6`
`=>-a=9=>a=-9`
a: f(1)=2+5-3=4
f(0)=-3
f(1,5)=4,5+7,5-3=9
b: f(3)=9 nên 3a-3=9
hay a=4
f(5)=11 nên 5a-3=11
hay a=14/5
f(-1)=6 nên -a-3=6
=>-a=9
hay a=-9