Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NA

cho a,b là các số dương thỏa mãn: a+b+c=3

Tìm GTNN của M=\(\sqrt{a^2+ab+b^2}\)+\(\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)

 

NL
13 tháng 8 2021 lúc 15:10

\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

Tương tự, ta có:

\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
AX
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết
KN
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết