Những câu hỏi liên quan
VT
Xem chi tiết
LL
Xem chi tiết
TN
12 tháng 4 2018 lúc 16:31

Hỏi đáp Toán

Bình luận (0)
DG
Xem chi tiết
NT
6 tháng 7 2022 lúc 21:47

a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)

\(=16m^2-32m+16+16m-40\)

\(=16m^2-16m-24\)

\(=8\left(2m^2-2m-3\right)\)

Để pT có nghiệm kép thì \(2m^2-2m-3=0\)

hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)

b: Thay x=2 vào PT, ta được:

\(4+8\left(m-1\right)-4m+10=0\)

=>8m-8-4m+14=0

=>4m+6=0

hay m=-3/2

Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)

=>x2=8

Bình luận (0)
DY
Xem chi tiết
NL
12 tháng 9 2021 lúc 17:38

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

Bình luận (1)
GK
Xem chi tiết
HN
14 tháng 6 2016 lúc 19:06

Mình hướng dẫn bạn nhé :))

Ta xét : \(\Delta'=\left(m-3\right)^2+4m-7=m^2-6m+9+4m-7=m^2-2m+2=\left(m-1\right)^2+1\ge1>0\)với mọi m thuộc tập số thực.

Vậy ta có điều phải chứng minh.

Bình luận (0)
GK
14 tháng 6 2016 lúc 19:24
Cho mình hỏi nếu Giải denta thì ra ntn có phải( 2m+1)² +7>0
Bình luận (0)
HN
14 tháng 6 2016 lúc 19:50

Bạn ơi, đây là "Đenta-phẩy \(\left(\Delta'\right)\)" bạn nhé.

Như sau : Cho phương trình bậc hai ẩn x : \(ax^2+bx+c=0\left(a\ne0\right)\)

Khi đó ta có : \(\Delta=b^2-4ac\)

Nếu có một hằng số \(b'\)nào đó sao cho \(b=2b'\)thì ta có : 

\(\Delta'=b'^2-ac\)

Bình luận (0)
AM
Xem chi tiết
LB
Xem chi tiết
NL
19 tháng 3 2021 lúc 16:09

a. Bạn tự giải

b. \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\4x+2y=6m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\5x=10m-5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2m-1\\y=-m+2\end{matrix}\right.\)

\(\dfrac{2}{x}-\dfrac{1}{y}=-1\Rightarrow\dfrac{2}{2m-1}-\dfrac{1}{-m+2}=-1\) (\(m\ne\left\{\dfrac{1}{2};2\right\}\))

\(\Leftrightarrow2\left(-m+2\right)-\left(2m-1\right)=\left(m-2\right)\left(2m-1\right)\)

\(\Leftrightarrow2m^2-m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
DG
Xem chi tiết
AH
8 tháng 5 2018 lúc 17:33

Lời giải:

a) Ta thấy:

\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt với mọi $m$

b) Áp dụng định lý Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$

Ta có đpcm.

Bình luận (0)
LB
Xem chi tiết
TM
19 tháng 3 2021 lúc 15:41

a. 

 \(\left\{{}\begin{matrix}x-2y=4.3-5\\2x+y=3.3\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x+4y=-14\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}5y=-5\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}y=-1\\2x-1=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}y=-1\\x=5\end{matrix}\right.\)

Vậy nghiệm của hpt là: (5;1)

Bình luận (0)