Những câu hỏi liên quan
MH
Xem chi tiết
NT
21 tháng 12 2021 lúc 21:26

a: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

DC là tiếp tuyến

DB là tiếp tuyến

Do đó: DC=DB

Ta có: CM+DC=DM

nên MD=MA+BD

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 3 2023 lúc 20:21

a: góc MAO+góc MCO=180 độ

=>MAOC nội tiếp

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc ADM=góc AEM=90 độ

=>AEDM là tứ giác nội tiếp

Bình luận (0)
PN
Xem chi tiết
NT
12 tháng 5 2023 lúc 13:54

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: góc BOM=2*60=120 độ

=>góc BDM=60 độ

=>ΔBMD đều

\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

Bình luận (1)
H24
Xem chi tiết
NT
4 tháng 10 2021 lúc 23:18

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA
Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

mà CM=CA

và DM=DB

nên CD=CA+DB

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 12 2021 lúc 22:46

b: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=AC+BD

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 12 2023 lúc 22:46

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

OC là phân giác của \(\widehat{AOM}\)

nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

Ta có: OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

b: Xét tứ giác BDMO có

\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)

=>BDMO là tứ giác nội tiếp đường tròn đường kính OD

=>B,D,M,O cùng nằm trên đường tròn đường kính OD

Bán kính là \(R'=\dfrac{OD}{2}\)

c: Ta có: CD=CM+MD

mà CM=CA 

và DM=DB

nên CD=CA+DB

d,e: Gọi N là trung điểm của CD

Xét hình thang ABDC có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

Ta có: ON//AC

AC\(\perp\)AB

Do đó: ON\(\perp\)AB

Ta có: ΔCOD vuông tại O

=>ΔCDO nội tiếp đường tròn đường kính CD

=>ΔCOD nội tiếp (N)

Xét (N) có

NO là bán kính 

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)

f: Xét ΔNCA và ΔNBD có

\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)

\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)

Do đó: ΔNCA đồng dạng với ΔNBD

=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)

nên MN//AC

Bình luận (0)
SY
Xem chi tiết
AH
25 tháng 2 2021 lúc 15:30

Bạn có thể tham khảo bài tương tự ở đây:

BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24

Bình luận (0)
BT
7 tháng 12 2021 lúc 17:43

 CM góc COD = 90 độ 

Theo tính chất 2 tiếp tuyến cắt nhau 

Ta có : OC là phân giác góc AOM

=> góc COM = 1/2 góc AOM 

OD là phân giác góc BOM 

=> góc DOM = 1/2 góc BOM

=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ

Bình luận (0)
BT
7 tháng 12 2021 lúc 17:46

CM CD = AC + BD 

Theo tính chất của 2 tiếp tuyến cắt nhau ta có : 

AC = CM 

BD = MD

=> CD = MC + MD hay 

CD = AC + BD

Bình luận (0)
TH
Xem chi tiết
NT
11 tháng 1 2023 lúc 9:37

1: Xét (O) có

CM,CA là tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

2: AC*BD=MC*MD=OM^2=R^2

Bình luận (0)
DT
Xem chi tiết
NT
5 tháng 1 2022 lúc 22:11

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot MD=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

Bình luận (0)