DT

Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng
AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại 0;
b) Chứng minh AC.BD=R^2;
c) trên tia Cx lấy điểm N sao cho AC = CN , chứng minh CO // NM .

NT
5 tháng 1 2022 lúc 22:11

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot MD=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PB
Xem chi tiết
BT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết