H24
  

Cho nửa đường tròn tâm O đường kính AB=2R . Kẻ hai tiếp tuyến Ax và By (Ax và By nằm cùng phía với nửa đường tròn). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt Ax và By theo thứ tự ở C và D.

Chứng minh rằng

a) chứng minh COD = 90 độ

b) Chứng minh 4 điểm B,D,M,O nằm trên cùng một đường tròn, chỉ ra bán kính của đường tròn đó.

c) Chứng minh CD=AC+BD

d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD

e) chứng minh AB là tiếp tuyến của đường tròn đường kính CD

f) Gọi giao điểm AD và BC là N. Chứng minh MN//AC

NT
8 tháng 12 2023 lúc 22:46

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

OC là phân giác của \(\widehat{AOM}\)

nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

Ta có: OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

b: Xét tứ giác BDMO có

\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)

=>BDMO là tứ giác nội tiếp đường tròn đường kính OD

=>B,D,M,O cùng nằm trên đường tròn đường kính OD

Bán kính là \(R'=\dfrac{OD}{2}\)

c: Ta có: CD=CM+MD

mà CM=CA 

và DM=DB

nên CD=CA+DB

d,e: Gọi N là trung điểm của CD

Xét hình thang ABDC có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

Ta có: ON//AC

AC\(\perp\)AB

Do đó: ON\(\perp\)AB

Ta có: ΔCOD vuông tại O

=>ΔCDO nội tiếp đường tròn đường kính CD

=>ΔCOD nội tiếp (N)

Xét (N) có

NO là bán kính 

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)

f: Xét ΔNCA và ΔNBD có

\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)

\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)

Do đó: ΔNCA đồng dạng với ΔNBD

=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)

nên MN//AC

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NP
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
AV
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết