GIẢI PHƯƠNG TRÌNH
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Tính tổng các nghiệm của phương trình sau : \(x^2-4x-3=\sqrt{x-5}\) ta được kết quả là :
A.\(\dfrac{3+\sqrt{29}}{2}\) B.\(\dfrac{-7-\sqrt{29}}{2}\) C.\(8\) D.\(\dfrac{5-\sqrt{29}}{2}\)
mng giải ra hộ mik ạ. mik cảm ơn
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
Bài 1: Thực hiện phép tính:
a, \(\left(\sqrt{24}-\sqrt{48}-\sqrt{6}\right)\sqrt{6}+12\sqrt{2}\)
b, \(\left(\sqrt{\dfrac{1}{5}}-\sqrt{\dfrac{16}{5}}+\sqrt{5}\right):\sqrt{20}\)
c, \(\sqrt{21+3\sqrt{48}}-\sqrt{21-3\sqrt{48}}\)
Bài 2: Giải các phương trình sau:
a, \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b, \(\sqrt{9x^2+12x +4}=4x\)
c, \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\)
GIÚP MIK VỚIIII
Bài 2:
a)\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: \(x\ge2\))
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+\dfrac{6}{\sqrt{81}}\sqrt{x-2}=-4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow-\sqrt{x-2}=-4\) \(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\) (thỏa)
Vậy...
b)\(\sqrt{9x^2+12x+4}=4x\)(Đk:\(9x^2+12x+4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge0\\9x^2+12x+4=16x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+12x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+14x-2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-2\right)\left(-7x-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=2\) (tm đk)
Vậy...
c) \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\) (đk: \(x\ge1\))
\(\Leftrightarrow x-2\sqrt{x-1}=x-1\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\) \(\Leftrightarrow x=\dfrac{5}{4}\) (tm)
Vậy...
Giải phương trình sau:
\(12-3x=\sqrt{3-x}.\sqrt{4-x}+\sqrt{4-x}.\sqrt{5-x}+\sqrt{5-x}.\sqrt{3-x}\)
a)\(\sqrt{29-12\sqrt{5}}\)
b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(a,\sqrt{29-12\sqrt{5}}=2\sqrt{5}-3\\ b,\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\\ =\sqrt{1}=1\)
a: \(\sqrt{29-12\sqrt{5}}=2\sqrt{5}-3\)
b: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
=1
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{6+3}=3\)
c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)
\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)
\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{3+\sqrt{3}}\)
d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)
\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)
\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
a) A=\(\sqrt{\left(4-\sqrt{15}\right)^2+\sqrt{15}}\)
b) B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
c) C=\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
d)D=\(\sqrt{29+12\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)
c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3\)
=6
a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)
\(A=4-\sqrt{15}+\sqrt{15}\)
\(A=4\)
b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)
\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(B=2-\sqrt{3}-1+\sqrt{3}\)
\(B=1\)
c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)
\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(C=3\sqrt{5}-2-3\sqrt{5}-2\)
\(C=-4\)
d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)
\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)
\(D=2\sqrt{5}+3-2\sqrt{5}+3\)
\(D=6\)
\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3\sqrt{\left(\sqrt{20-3}\right)^2}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)