Cho hyperbol có phương trình \(\frac{{{x^2}}}{7} - \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của hyperbol.
Cho hyperbol có phương trình \(\frac{{{x^2}}}{7} - \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của hyperbol.
Ta có: \({a^2} = 7,{b^2} = 9 \Rightarrow c = \sqrt {7 + 9} = 4\) nên hypebol có hai tiêu điểm là \({F_1}\left( { - 4;0} \right);{F_2}\left( {4;0} \right)\) và tiêu cự là \({F_1}{F_2} = 2c = 8\).
Phương trình nào sau đây là phương trình chính tắc của đường hyperbol?
A. \(\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = - 1\)
B. \(\frac{{{x^2}}}{1} - \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{6} + \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = - 1\)
Đề ôn chuyên Toán lần 1
1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm )
b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm )
2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\) .Tìm m để (d) cắt Ox , Oy tại A và B sao cho diện tích tam giác OAB lớn nhất . Tính giá trị lớn nhất đó ( 3 điểm )
3 , a, Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\) ( 3 điểm )
b, Giải hệ phương trình (3 điểm ) \(\left\{{}\begin{matrix}2\sqrt{2x+y}=3-2x-y\\x^2-2xy=y^2+2\end{matrix}\right.\)
4, Cho tam giác ABC nhọn nội tiếp (O) . đường tròn tâm J đường kính BC cắt AB,AC ở E và F. Gọi H và K lần lượt là trực tâm tam giác ABC , AEF .Gọi I là tâm đường tròn ngoại tiếp tam giác AEF
a, Chứng minh A,I,H thẳng hàng ( 2 điểm ) b, Chứng minh KH , EF, IJ đồng quy (2 điểm )
5, Cho a,b,c >0 và abc=1 . Chứng minh \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\le1\) ( 2 điểm )
6, CHO (O) . ĐIỂM A Ở NGOÀI ĐƯỜNG TRÒN VẼ 2 TIẾP TUYẾN AB ,AC VÀ CÁT TUYẾN ADE ( D NẰM GIỮA A VÀ E ) . ĐƯỜNG THẲNG QUA D // AB CẮT BC,BE Ở H VÀ K . CHỨNG MINH DH=HK (2 ĐIỂM )
Câu 1: ĐKXĐ:...
\(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}\right]\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+\sqrt{y}\right)}\right).\frac{\left(x+\sqrt{xy}+y\right)}{x-y}\right]\)
\(=\frac{\left(x-\sqrt{xy}+y+3\sqrt{xy}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}\left(\frac{x+\sqrt{xy}+y-3\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\right).\left(\frac{x+\sqrt{xy}+y}{x-y}\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-\sqrt{xy}+y\right)}.\frac{\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)}.\frac{\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{1}{x-\sqrt{xy}+y}\)
b/
\(\left(x-y\right)^3+3xy\left(x-y\right)=6xy+3\)
Đặt \(\left\{{}\begin{matrix}x+\left(-y\right)=a\\x.\left(-y\right)=b\end{matrix}\right.\) \(\Rightarrow a^2\ge4b\)
\(\Rightarrow a^3-3ab=-6b+3\)
\(\Leftrightarrow a^3-3=\left(3a-6\right)b\Rightarrow3b=\frac{a^3-2}{a-2}=a^2+2a+4+\frac{6}{a-2}\) (1)
a;b nguyên \(\Rightarrow\frac{6}{a-2}\) nguyên \(\Rightarrow a-2=Ư\left(6\right)=...\)
Sau đó thay ngược lại (1) để loại nghiệm và giải ra x;y
2. Đề bài bạn viết thiếu thì phải
3. a/
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2+5x+1}=a\\\sqrt{4x^2-4x+4}=b\end{matrix}\right.\)
\(\Rightarrow a-b=a^2-b^2\Leftrightarrow a-b=\left(a-b\right)\left(a+b\right)\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)
- Với \(a=b\Rightarrow9x-3=0\Rightarrow x=...\)
- Với \(a+b=1\Rightarrow\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}+\sqrt{\left(2x-1\right)^2+3}=1\)
\(VT\ge\sqrt{3}>1\Rightarrow\) pt vô nghiệm
b/ ĐKXĐ: ...
\(2x+y+2\sqrt{2x+y}-3=0\)
\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)
\(\Leftrightarrow\sqrt{2x+y}=1\Rightarrow y=1-2x\)
Thay vào pt dưới:
\(x^2-2x\left(1-2x\right)=\left(1-2x\right)^2+2\)
\(\Leftrightarrow...\) bạn tự giải
5.
\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)
\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
\(\Rightarrow VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(x+z\right)+xyz}\)
\(VT\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Bai 1: Cho P=(\(\frac{\sqrt{x}}{x\sqrt{x}—1}\)+ \(\frac{1}{\sqrt{x}-1}\)) và Q= \(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)a) tìm điều kiện của x. b) tính giá trị của Q khi x=81. c) tìm biểu thức A=P:Q . c) với x>1 so sánh A và \(\sqrt{A}\)
Bài 2 giải hệ phương trình \(\hept{\begin{cases}\frac{2}{\left|x-y\right|}+\frac{1}{\sqrt{x-2}}=2\\\frac{6}{\left|x-y\right|}-\frac{2}{\sqrt{X-2}}=1\end{cases}}\)
Bài 3: cho tam giác ABC nhọn AB<AC nội tiếp (O;R), tiếp tuyến tại A của (O) cắt BC tại S gọi I là trung điểm của BC. a) cm SAOI nội tiếp b) vẽ dây cung AD vuông góc SO tại H cm: SD=SA. c) giao điểm của AD và BC là K. d) vẽ đường kính PQ qua điểm I ( Q thuộc CD ), SP cắt (O) tại M cm: M,K,Q thẳng hàng.
Một tháp làm nguội của một nhà máy có mặt cắt là hình hyperbol có phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) (hình 17). Biết chiều cao của tháp là 150 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol là \(\frac{2}{3}\) khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp.
Gọi khoảng cách từ tâm đối xứng đến đáy tháp là z
Suy ra khoảng cách từ tâm đối xứng đến nóc tháp là \(\frac{2}{3}z\)
Ta có \(z + \frac{2}{3}z = 150 \Rightarrow z = 90\)
Thay \(y = 90\) vào phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) ta tìm được \(x = 4\sqrt {274} \)
Thay \(y = 60\) vào phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) ta tìm được \(x = 4\sqrt {149} \)
Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là \(4\sqrt {149} \) m và \(4\sqrt {274} \)m
Cho hàm số \(y = f(x) = a{x^2} + bx + c\) với đồ thị là parabol (P) có đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\) và đi qua điểm \(A(1;2)\)
a) Biết rằng phương trình của parabol có thể viết dưới dạng \(y = a{(x - h)^2} + k\), tron đó I(h;k) là tọa độ đỉnh của parabol. Hãy xác định phương trình của parabol (P) đã cho và vẽ parabol này.
b) Từ parabol (P) đã vẽ ở câu a, hãy cho biết khoảng đồng biến và khoảng nghịch biến của hàm số \(y = f(x)\)
c) Giải bất phương trình \(f(x) \ge 0\)
a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.
\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)
(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)
\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)
Vậy parabol đó là \(y = {x^2} - 5x + 6\)
b) Vẽ parabol \(y = {x^2} - 5x + 6\)
+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)
+ Giao với Oy tại điểm \((0;6)\)
+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)
+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)
b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)
Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)
c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)
Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)
Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)
Cách 2:
\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)
Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)
Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)
Câu 1: Tìm điểm M thuộc đò thị(c): \(y= x^3-3x^2-2\) biết hệ số góc của tiếp tuyến với (c) tại M bằng 9
A.M(1;-6),M(-3;-2) B.M(-1;-6),M(3;-2) C.M(-1;-6),M(-3;-2) D.M(1;6),M(3;2)
Câu 2: Tiếp tuyến với đồ thị hàm số \(y=\frac{1}{3}x^3-2x^2+3x+4\) biết tiếp tuyến song song với đt d:y= \(3x-\frac{20}{3}\) là:
A.y=3x+4;y=\(3x-\frac{20}{3}\) B.y=3x-4;y=\(3x-\frac{40}{3}\) C.y=3x+4 D.y=3x-4
Câu 3: có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (0;10) đẻ đường thẳng d:y=-x+m cắt đò thị hàm số \(y=\frac{2x+1}{x-1}\)tại hai điểm phan biệt
A.5 B.6 C.7 D.8
Câu 4: Đặt a=log126, b=log12 7. Hãy biểu diễn log27 theo a và b
\(A.\frac{a}{b+1} B.\frac{b}{1-a} C.\frac{a}{b-1} D.\frac{b}{a+1}\)
Câu 1:
\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)
Gọi hoành độ của M là \(x_M\)
Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:
\(f'(x_M)=3x_M^2-6x_M=9\)
\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$
\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)
Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)
Đáp án B
Câu 2:
Gọi hoành độ tiếp điểm là $x_0$
Hệ số góc của tiếp tuyến tại tiếp điểm là:
\(f'(x_0)=x_0^2-4x_0+3\)
Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)
\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)
Khi đó: PTTT là:
\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )
Do đó \(y=3x+4\Rightarrow \) đáp án A
Câu 3:
PT hoành độ giao điểm:
\(\frac{2x+1}{x-1}-(-x+m)=0\)
\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)
Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt
\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)
\(\Leftrightarrow m^2-6m-3> 0\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)
Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)
Có 3 giá trị m thỏa mãn.
Câu 4:
Ta có:
\(\log_{12}7.\log_72=\log_{12}2\)
\(\Leftrightarrow b\log_72=\log_{12}(\frac{12}{6})=1-\log_{12}6\)
\(\Leftrightarrow b\log_72=1-a\) (1)
Có: \(\log_72\log_27=\log_77=1\Rightarrow \log_72=\frac{1}{\log_27}\) (2)
Từ (1),(2) suy ra \(b.\frac{1}{\log_27}=1-a\Rightarrow \log_27=\frac{b}{1-a}\)
Đáp án B
Cho hàm số \(y=\frac{2x-1}{x+1}\), viết phương trình tiếp tuyến của (H) biết rằng tiếp điểm của tiếp tuyến đó với (H) cách điểm A(1;0) một khoảng bằng 2
Gọi \(M\left(x_0;\frac{2x_0-1}{x_0-1}\right);x_0\ne-1\) là tiếp điểm.
Theo đề bài ta có MA = 2
hay \(x^2_0+\left(\frac{2x_0-1}{x_0+1}-1\right)^2=4\Leftrightarrow x^2_0+\left(\frac{x_0-2}{x_0+1}\right)^2=4\)
\(\Leftrightarrow x_0\left(x_0-2\right)\left(x^2_0+4x_0+6\right)=0;\left(x_0\ne-1\right)\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)
* Với \(x_0=0\), phương trình tiếp tuyến là \(y=y'\left(0\right)\left(x-0\right)+y\left(0\right)\) hay \(y=3x-1\)
* Với \(x_0=2\), phương trình tiếp tuyến là \(y=y'\left(2\right)\left(x-2\right)+y\left(2\right)\) hay \(y=\frac{1}{3}x+\frac{1}{3}\)
Vậy có tiếp tuyến thỏa mãn bài toán \(y=\frac{1}{3}x+\frac{1}{3}\) và \(y=3x-1\)
Đề luyện thi HSG số 5
Bài 1 (3 điểm) Thực hiện phép tính:
a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)
b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)
c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3} . (1 + 2 +3) +\frac{1}{4} . (1 + 2 + 3 + 4) + ...+ \frac{1}{2015} . (1 + 2 + 3 +...+2015)\)
Bài 2 (10 điểm) Tìm x, y, z biết:
a) \((1 - x) . (2x + 3) < 0\)
b) \((2x - 1)^4 = 16\)
c) \((2x + 1)^4 = (2x + 1)^6\)
d) \(\frac{x - 1}{-15} = \frac{-60}{x-1}\)
e) \(-4x . (x - 5) - 2x . (8 - 2x) = -3\)
f) \(3x = 27; 7y = 5z \) và \(x - 7 + z = 32\)
g) \(\frac{2x + 1}{5} = \frac{3y - 2}{7} = \frac{2x + 3y - 1}{6x}\)
h) \(\frac{x+6}{2002} + \frac{x + 5}{2003} + \frac{x + 4}{2004} = \frac{x + 3}{2005} + \frac{x + 2}{2006} + \frac{x + 1}{2007}\)
Bài 3 (1,5 điểm) Bốn lớp 7A, 7B, 7C, 7D đi lao động trồng cây. Biết rằng số cây trồng của bốn lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với 0,8; 0,9; 1; 1,1 và lớp 7B trồng nhiều hơn lớp 7A là 5 cây. Tính số cây mỗi lớp đã trồng.
Bài 4 (1,5 điểm)
a) Tìm các số a1, a2, a3,..., a100, biết \(\frac{a_{1} - 1}{100} = \frac{a_{2} - 2}{99} = \frac{a_{3} - 3}{98} =...= \frac{a_{100} - 100}{1}\) và \(a_{1} + a_{2} + a_{3} +...+ a_{100} = 10100\)
b) Biết rằng: \(1^4 + 2^4 + 3^4 +...+ 10^4 = 25333\). Tính \(S = 2^4 + 4^4 + 6^4 +...+ 20^4\)
Bài 5 (1,5 điểm) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện: \(\frac{y + z -x}{x} = \frac{z + x -y}{y} = \frac{x +y - z}{z}\). Hãy tính giá trị của biểu thức \(A = (1 + \frac{x}{y})(1 + \frac{y}{x})(1 + \frac{z}{x})\)
Bài 6 (3,0 điểm) Cho \(\Delta ABC\), gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB, trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh rằng:
a) Ba điểm E, A, D thẳng hàng
b) A là trung điểm của ED
Bài easy quá mà!
4. a) Áp dụng tỉ dãy số bằng nhau:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)
\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)
Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)
\(a_2-2=99\Leftrightarrow a_2=101\)
.......v.v...
\(a_{100}-100=1\Leftrightarrow a_{100}=101\)
Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)
Bài 5/
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)
Suy ra:
\(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")
Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
Bài 6a) chính là bài thi học kì của mình hôm qua đấy! Bạn nhớ viết thường hoặc viết hoa giống như mình nhé (chỗ mấy cái góc này nó đó.Dễ nhầm lẫn lắm)
a) Gọi O là giao điểm của EC và DB.Qua O kẻ d // ED
Do d // ED (do cách dựng) suy ra \(\widehat{dOA}+\widehat{EAO}=180^o\) (hai góc trong cùng phía) (1)
Mặt khác cũng do d // ED,suy ra \(\widehat{dOA}=\widehat{DAO}\) (so le trong) (2)
Thay (2) và (1) suy ra \(\widehat{DAO}+\widehat{EAO}=180^o\Rightarrow\) E,A,D thẳng hàng
Cho (H): \(\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{25}} = 1\). Tìm các tiêu điểm và tiêu cự của (H).
Ta có: \(c = \sqrt {144 + 25} = 13\).
Do đó (H) có hai tiêu điểm là \({F_1}\left( { - 13;0} \right),{F_2}\left( {13;0} \right)\) và có tiêu cự bằng \(2c = 26\).