Bài 4: Ba đường conic trong mặt phẳng tọa độ

QL

Một tháp làm nguội của một nhà máy có mặt cắt là hình hyperbol có phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) (hình 17). Biết chiều cao của tháp là 150 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol là \(\frac{2}{3}\) khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp.

HM
27 tháng 9 2023 lúc 0:18

Gọi khoảng cách từ tâm đối xứng đến đáy tháp là z

Suy ra khoảng cách từ tâm đối xứng đến nóc tháp là \(\frac{2}{3}z\)

Ta có \(z + \frac{2}{3}z = 150 \Rightarrow z = 90\)

Thay \(y = 90\) vào phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) ta tìm được \(x = 4\sqrt {274} \)

Thay \(y = 60\) vào phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) ta tìm được \(x = 4\sqrt {149} \)

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là \(4\sqrt {149} \) m và \(4\sqrt {274} \)m

Bình luận (0)

Các câu hỏi tương tự
QL
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết